Mixed-oxides for carbonaceous fuel conversion via chemical looping with oxygen uncoupling (CLOU)

Amit Mishra* Nathan Galinsky Arya Shafiefarhood Erik Santiso (co-PI) *Fanxing Li (PI)*

04/29/2015

Outline

• Background

- Perovskite Based Oxygen Carriers
 - Experimental investigation of A/B-site substitution effects
 - DFT investigation of substitution effects
- Perovskite Promoted Mixed Fe-Mn and Fe-Co Oxides
- Summary and Future Work

Background – World Energy Supply and Demand

Carbon capture represents one of the key options for clean and sustainable usage of fossil energy

EIA, USDOE, International Energy Outlook

Chemical Looping Combustion (CLC)

CLC

- 2-Step Chemical Loop
- Fluidized Bed Reducer and Oxidizer
- Product: Heat, Power

<u>Step 1</u>: $MeO_x + Fuel \leftarrow \rightarrow MeO_y + H_2O + CO_2$

<u>Step 2</u>: $MeO_y + Air \leftarrow \rightarrow MeO_x + N_2 + Heat$

Me can be Ni, Fe, Cu, Mn, Co, etc

NC STATE UNIVERSITY

Why Chemical Looping?

Potential advantages of Chemical looping:

- Tunable enthalpy extractible for heat engines through heat recuperation
- Fully integrated carbon dioxide separation cycle
- Delivery pressure of CO₂ can potentially be high

Potentially higher 2nd law efficiency

Chemical Looping Processes – Status of Development

Ohio State University Chalmers University of Technology

Vienna University of Technology

Korean Institute of Energy Research

kW and MW-scale demonstration plants have been constructed and operated

Photos curtsey of Chalmers University of Technology, Ohio State University, Vienna University of Technology, and Korea Institute of Energy Research,

NC STATE UNIVERSITY

Chemical Looping Processes – Advantages and Challenges

Keys to Success:

- 1. Oxygen carrier particles with good reactivity, recyclability, and strength;
- 2. Reactor design that can effectively convert and circulate oxygen carrier particles

Fan L-S. Chemical looping systems for fossil energy conversions. John Wiley & Sons, 2010

Chemical Looping Combustion for Solid Fuels - Challenges

Low solid fuel conversion due to slow solid-solid reaction rate

Accelerated Solid Fuel Conversion – Chemical Looping with Oxygen Uncoupling (CLOU)

Underlying principle:

- Use of oxygen carriers that allow facile exchange of lattice oxygen with external environment under varying oxygen partial pressures
- Oxygen releases help combust the coal char and volatiles

Challenges:

- Developing oxygen carriers with:
 - Spontaneous release of lattice oxygen into gas phase
 - Easy re-oxidation in air
 - Structural integrity and oxygen carrying capacity

Material Selection – Rapidly Expanding Material Design Space

Mixed first row transition metal oxides

M. Rydén et al., 2nd International Conference on Chemical Looping, 2012 Structure and Properties of Perovskite Oxides, Tatsumi Ishihara

NC STATE UNIVERSITY

Outline

- Background
- Perovskite Based Oxygen Carriers
 - Experimental investigation of A/B-site substitution effects
 - DFT investigation of substitution effects
- Perovskite Promoted Mixed Fe-Mn and Fe-Co Oxides
- Summary and Future Work

Stability of CaMnO₃: *In-Situ* XRD Studies

CaMnO₃ is chosen as the base material due to its well-known CLOU Properties

- Peaks begin to significantly shift between 800-850°C ; sign of oxygen uncoupling
- Up to 1100°C cubic CaMnO_{3- δ} remains stable

Stability of CaMnO₃: *In-Situ* XRD Studies

- After 1100°C spinel CaMn₂O₄ and Ruddlesdon-Popper Ca₂MnO₄ phases form
- Irreversible phase transition also observed under isothermal cyclic conditions at lower temperatures

Motivation for Dopant Addition

CaMnO₃

Primary Perovskite Material	CaMnO ₃
A-site Dopants	Ba and Sr
B-site Dopants	Fe, Co, Ni, V, Al

DFT calculation of vacancy formation energy E_{O_V} , FM E_{O_V} , AFM (eV) (eV) BaMnO₃ 2.79 3.18 CaMnO₃ 2.59 2.63

Testing Conditions:

T: 650-1200°C **P₀₂:** <<0.01-0.10atm

Experiments:

- (In-situ) XRD 1)
- Temperature programmed desorption (TPD) 2)
- 3) Isothermal (chemical looping) cycling
- 4) Redox cycles with solid fuel

Effect of A-site Substitution for CaMnO₃- Barium

Ba dopant is largely immiscible with the CaMnO₃ structure, Ba doped samples also showed poor redox stability

Effect of A-site Substitution for CaMnO₃- Barium

Ba substitution is ineffective to prevent irreversible phase change of CaMnO₃

Effect of A-site Substitution for CaMnO₃- Strontium

Sr forms well defined solid solution with CaMnO₃

Effect of A-site Substitution for CaMnO₃- Strontium

No irreversible phase transition observed up to 1200 °C

Isothermal CLOU Experiments

Ca_{0.75}Sr_{0.25}MnO₃ is redox active down to 650 °C and recyclable for 100 cycles, while CaMnO₃ is relatively inactive until above 800°C

Fluidized Bed Setup

Fluidized Bed Experiments

Char cycles after 20 hours operation in helium/10% O_2 redox mode (~60 cycles) and 10 other char cycles spread throughout the 20 hours of operation

Temperature: 850°C Fluidization velocity: 6 times of U_{mf} Coal Used: Sea coal (bituminous) Attrition rate: <0.02%/hour

Effect of B-site Dopants

B-site substitution also leads to oxygen carriers with varying redox properties

Isothermal Redox Experiments

Iron doped CaMnO₃ exhibits excellent redox activity under low temperatures

DFT Investigation: $\Delta E_{vacancy}$ (Hexagonal BaMnO₃)

DFT Investigation: $\Delta E_{vacancy}$ (Orthorhombic CaMnO₃)

- Orthorhombic reaches a value of $\Delta E_{vacancy}$ of ~ 2.6-2.7eV
- Antiferromagnetic state is adopted
- Thermodynamically, oxygen vacancy is more favorable with CaMnO₃ than BaMnO₃

ΔE_{vacancy} (Orthorhombic Ca_{.75}Sr_{.25}MnO₃)

- Ca_{.75}Sr_{.25}MnO₃ contains 12 distinct oxygen positions
- Lower ΔE_{vacancy} with larger distance from Sr and lower coordination, e.g. smaller vacancy formation energy if O²⁻'s closest cations being 2Mn-2Ca or 2Mn-1Sr-1 Ca

A-AFM (100)

Fixed Volume Variable Volume

DFT Investigation: $\Delta E_{vacancy}$ (Orthorhombic $Ca_{.75}Sr_{.25}MnO_3$)

- Same trends observed for A-type and G-type antiferromagnetism
- Both magnetic states produce a $\Delta E_{vacancy}$ that is lower than CaMnO₃
- Sr dopant helps to promote oxygen vacancy formation

Outline

- Background
- Perovskite Based Oxygen Carriers
 - Experimental investigation of A/B-site substitution effects
 - > DFT investigation of substitution effects
- Perovskite Promoted Mixed Fe-Mn and Fe-Co Oxides
- Summary and Future Work

Mixed-Oxide Selection Rationale

Common CLC oxygen carriers

• Iron

• Copper

- Manganese
- Nickel

• Cobalt

Reaction	Т (°С)	ΔH (kJ/mol)	∆G (kJ/mol)	P _{O2} (atm)
$\mathbf{6Fe_2O_3} = \mathbf{4Fe_3O_4} + \mathbf{O_2}$	900	493.2	145.5	3.32E-07
$6\mathbf{Mn}_2\mathbf{O}_3 = 4\mathbf{Mn}_3\mathbf{O}_4 + \mathbf{O}_2$	900	193.1	15	0.21
$2\mathbf{C}_{03}\mathbf{O}_4 = 6\mathbf{C}_0\mathbf{O} + \mathbf{O}_2$	900	406.7	11.2	0.32

• Samples Prepared (SSR and sol-gel methods)

- Iron-Cobalt mixed metal oxides
 - 30%Co-70%Fe
 - 60%Co-40%Fe
 - 90%Co-10%Fe
 - Above with LSCF support
- Iron-Manganese mixed metal oxides
 - 50%Mn-50%Fe
 - 70%Mn-30%Fe
 - 90%Mn-10%Fe
 - Above with LSMF support

Motivation for Support Addition

Galinsky, et al., ACS Sustainable Chem. Eng, 2013, 1, 364-373. Shafiefarhood et al., ChemCatChem, 2014, 6(3): 790-799. He et al, Energy Environ. Sci., 2014, 7, 2033-2042. Chen et al., Fuel. 2014, 134, 521-530 Shafiefarhood, et al. Fuel. 2014, DOI: 10.1016/j.fuel.2014.08.014 Neal et al., ACS Catalysis. 2014, DOI: 10.1021/cs5008415 Galinsky, et al., Applied Catalysis B: Environmental, 2015, 164, 371-379,. He et al, Energy Environ. Sci. 2015, 8, 535-539

Material Synthesis and Characterizations

- XRD confirms the formation of the desired phases
- Samples with higher concentrations of Co and Mn are more prone to oxygen loss; therefore, they showed slight decomposition to lower oxidation states during sintering

Shafiefarhood et al., Fuel. 2015, 139, 1-10

Decomposition Temperature Comparisons of Pure and Supported Samples

Perovskite supports reduce the decomposition temperatures of Co-Fe and Mn-Fe oxides

Isothermal CLOU Testing (850 °C, He inert $\leftarrow \rightarrow$ 10% O₂)

Up to 2.9 w.t.% oxygen carrying capacity achieved, supports significantly enhances the CLOU performance of Co-Fe based oxygen carriers

Isothermal Cyclic Methane Conversion (850 °C, 10% $CH_4 \leftarrow \rightarrow 10\% O_2$)

Perovskite support enhances the redox performances of both Co-Fe and Mn-Fe oxides for methane conversion

Summary

- A-site and B-site doping in CaMnO₃ can enhance its redox stability and low temperature CLOU properties
- DFT can be used to explain the experimental data, it can potentially be used to guide oxygen carrier development
- Mixed Mn-Fe and Co-Fe oxides can exhibit tunable redox properties
- Perovskite significantly enhances the CLOU properties of Co-Fe oxides

Future Work

- Determination of critical P₀₂ values for oxygen carrier optimization
- Comprehensive DFT calculation and validation by experimental results
- Development of effective molecular dynamic simulation tools to estimate mixed-oxide properties and use of metaheuristic algorithms for OC optimization
- Optimized OC for CLOU applications

Journal Articles

- Arya Shafiefarhood, Amy Stewart, Fanxing Li* "Iron-Containing Mixed-Oxide Composites as Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU)". Fuel. 2015, 139, 1-10
- Nathan Galinsky, Amit Mishra, Jia Zhang, and Fanxing Li^{*} "Ca_{1-x}A_xMnO₃ (A= Sr and Ba) Perovskite Based Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU)". Applied Energy, 2015 In Press DOI:10.1016/j.apenergy.2015.04.020
- Amit Mishra and Fanxing Li "Chemical Looping Reforming of Methane Using $BaMn_{1-x}B_xO_3$ (B= Fe and Ni)" (in preparation)
- Nathan Galinsky and Fanxing Li "CaMn_{1-x}B_xO₃ (B=Fe, V, Ni, Co, and Al) Perovskite Based Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU)" (in preparation)

Conference Presentations

- Arya Shafiefarhood, Nathan Galinsky, and Fanxing Li. "Mixed-oxides for carbonaceous fuel conversion with integrated CO₂ capture via chemical looping with oxygen uncoupling (CLOU)" 248th ACS National Meeting. San Francisco, CA. August 2014.
- Arya Shafiefarhood, Nathan Galinsky, Amit Mishra, and Fanxing Li. "Composite mixed oxides for chemical looping with oxygen uncoupling." 3rd International Conference on Chemical Looping. Gothenburg, Sweden. 10 September 2014. Conference Presentation.
- Nathan Galinsky, Amit Mishra, and Fanxing Li. "Perovskite Based Oxygen Carriers for Chemical Looping with Oxygen Uncoupling." 2014 AICHE Annual Meeting. Atlanta, GA. 19 November 2014.

• Prof. Erik Santiso (Co-PI)

- Dr. Jia Zhang
- Graduate Students:
 - Amit Mishra
 - Nathan Galinsky
 - Arya Shafiefarhood
- Undergraduate Students:
 - Lindsay Bowers
 - Grant Thomas
- Funding:
 - US DOE
- Project Managers
 - Jason Hissam and David Lyons

Acknowledgement

Thanks!

DFT Parameters

VASP package

Electron Ion Interaction: PAW

Exchange correlation functional: PBE-GGA

Energy cut-off: 425 eV

 $EDIFF = 10^{-4} eV$

Fixed mesh density for varying super cell sizes:

Orthorhombic CaMnO3: 4x4x4 for 1 unit cell; monkhorst pack

Orthorhombic Ca.75Sr.25MnO3: 4x4x4 for 1 unit cell; monkhorst pack

Hexagonal BaMnO3: 4x4x4 for 1 unit cell; Gamma centered

$$E_{O_V} = E_{AMnO_{3-\delta}} + \frac{1}{2}E_{O_2} - E_{AMnO_3}$$

Spinel/Bixbyite – Perovskite Phase Compatibility Studies

- Sharp concentration differences when passing the phase boundary confirms that no significant phase diffusion is occurred and Co tends to stay in the mixed metal oxide part
- Gradual decrease in concentration of Mn when passing the phase boundary implies that manganese diffused through the LSF support and substitute iron in its B-site

Element	Atomic % from EDX				
	Point 1	Point 2	Point 3	Point 4	
Co or Mn	2.39	98.80	99.50	4.64	
Fe	60.55	1.13	0.46	57.93	
La	29.07	0.01	0.00	27.36	
Sr	7.99	0.06	0.03	10.06	

Metal Oxide Decomposition Behavior

Decomposition temperature of Co-Fe and Mn-Fe oxides decrease with decreasing Fe content. Supported samples do not exhibit clear trends.

Isothermal CLOU Testing (850 °C, He inert $\leftarrow \rightarrow$ 10% O₂)

- CLOU properties of mixed Fe-Co oxides are enhanced by perovskite addition
- Oxygen carrying capacity of mixed Fe-Mn oxides under an isothermal condition is negatively affected by perovskite addition

Limitations to conventional combustion – absorption based processes:

- Fixed extractible enthalpy from boiler/flue gas
- Absorber-stripper cycle consumes high grade heat and rejects low grade heat
- Delivery pressure of CO₂ is limited

Low 2nd Law efficiency!

DFT Investigation: $\Delta E_{vacancy}$ (Orthorhombic CaMnO₃) Type 1 Vacancy Formation •• °o 👩 °o Type 2 Vacancy Formation .

Char Oxidation using Perovskites

Sr doped perovskite shows notably lower reaction temperatures for char oxidation