Reaction of Lanthanide Zirconate Pyrochlore Environmental Barrier Coating Materials in CMAS

Jeffrey W. Fergus

UNIVERSITY

2015 Crosscutting Research Review Pittsburgh, PA 28 April 2015

Participants

- Auburn University
 - Jeff Fergus
 - Honglong (Henry) Wang Ph.D. Student
 - Xingxing Zhang Ph.D. Student
 - Emily Tarwater Undergraduate Student
 - Sudip Dasgupta Visiting Scholar (Summer 2014)
- Plasma Processes LLC
 - Kyle Murphree
 - Tim McKechnie

Bond coat system

- Collaboration with Plasma Processes LLC
- Alternative bond coat layers
- YSZ / zirconate coatings

http://www.plasmapros.com/

Samuel Ginn College of Engineering

CCR 2015

28 April 2015

Thermal barrier coating system

IBC: YSZ and/or pyrochior

Hf (25-50 μm) Ir (50-100 μm) Re diffusion layer Flash Ni coating

Alloy: 738LC

Plasma spray for YSZ / pyrochlore

Molten salt electrochemical deposition (El-Form®) for Re/Hf/Ir

Samuel Ginn College of Engineering

28 April 2015

Approach

- Coating development
 - Evaluate need for Ni coating
 - Optimize Hf/Ir for YSZ
 - Feasibility Hf/Ir for pyrochlore
 - YSZ + pyrochlore
- Coating materials
 - Stability of pyrochlore in CMAS
 - $Gd_2Zr_2O_7$, $Sm_2Zr_2O_7$, mixed
 - Accelerate with high temperature exposures

Need for nickel layer

SAMUEL GINN College of Engineering

Rhenium coating with/without nickel

Samuel Ginn College of Engineering

Iridium coatings on round samples

2 out of 20 iridium coatings good quality

Electrochemical deposition reveals nonvisible defects in Re coating

Samuel Ginn College of Engineering

28 April 2015

Iridium coatings on rectangular samples

Rectangular coatings for mechanical testing

SAMUEL GINN College of Engineering

28 April 2015

Revised approach

- Electrochemical deposition process sensitive to defects in substrate coating
- Focus coating efforts on environmental barrier coatings
- Plasma-sprayed materials to corroborate results from sintered ceramics

Pyrochlore coating materials

- Reaction with CMAS
- Thermal conductivity

Reaction with CMAS

28 April 2015

CCR 2015

C.S. Ramachandran *et al., Ceram. Int.* **39**, 1413 (2013)

AUBURN UNIVERSITY

Thermal conductivity of zirconia with 7-8% yttria

Range of thermal conductivities due to variations in morphology and microstructure

J. Fergus. *Met. Mater. Trans E* **1**, 118 (2014).

Thermal conductivity of Gd₂Zr₂O₇

Thermal conductivity of Sm₂Zr₂O₇

Samuel Ginn College of Engineering

Ytterbium-doping

Samuel Ginn College of Engineering

Thermal conductivity of mixed pyrochlores

Pyrochlore coating materials

- Synthesis of pyrochlore
 - Co-precipitation
- CMAS exposure
 - Melt / solidify Ca-Mg-Al-Si oxide mixtures
 - Crush glass, apply to pyrochlore pellet
 - Expose to 1200-1400°C
- Characterization
 - XRD, SEM, optical microscopy

CMAS Composition							
Oxide	Percentage						
CaO	33						
MgO	9						
AIO _{1.5}	13						
SiO ₂	45						

SAMUEL GINN College of Engineering

Microstructure of Gd₂Zr₂O₇

SAMUEL GINN College of Engineering

Phase content of Gd₂Zr₂O₇

Gd₂Zr₂O₇ after CMAS at 1400°C for 5 hours

Gd₂Zr₂O₇ after CMAS at 1300°C for 5 hours

Samuel Ginn College of Engineering

$Gd_2Zr_2O_7$ after CMAS at 1300°C for 5 hours

SAMUEL GINN College of Engineering

28 April 2015

Atomic Percentage for a)

	0	Mg	Al	Si	Ca	Zr	Gd	Au
Spectrum 1	62		1	2	3	22	6	4
Spectrum 2	59		1	2	2	24	7	4
Spectrum 3	61		2	3	4	21	6	4
Spectrum 4	60		1	3	4	22	6	4
Spectrum 5	62		1	3	3	21	6	4

Gd₂Zr₂O₇ after CMAS at 1300°C for 5 hours

Atomic Percentage for b)

$Ca_2Gd_8(SiO_4)_6O_2$

	0	Mg	Al	Si	Са	Zr	Gd	Au
Spectrum 1	64			13	5	1	13	4
Spectrum 2	65		1	12	5	1	12	4
Spectrum 3	66		1	13	5	1	11	3
Spectrum 4	60	1	2	12	6	4	12	4

SAMUEL GINN College of Engineering

20 April 2010

UUR 2015

Concentration											
0	Mg	AI	Si	Ca	Zr	Gd	Au				
62	-	-	14	5	-	15	4				
60	2	4	12	5	-	13	4				
	0 62 60	Co O Mg 62 - 60 2	Conc O Mg Al 62 - - 60 2 4	Concent O Mg Al Si 62 - - 14 60 2 4 12	O Mg AI Si Ca 62 - - 14 5 60 2 4 12 5	O Mg Al Si Ca Zr 62 - - 14 5 - 60 2 4 12 5 -	O Mg AI Si Ca Zr Gd 62 - - 14 5 - 15 60 2 4 12 5 - 13				

Gd silicate

SAMUEL GINN College of Engineering

28 April 2015

Concentration											
#	0	Mg	AI	Si	Ca	Zr	Gd	Au			
1	56	-	-	14	6	1	17	5			
2	63	-	3	12	5	1	13	4			
3	67	-	1	12	4	1	12	3			
4	64	-	1	1	5	-	13	4			

Gd silicate

SAMUEL GINN College of Engineering

28 April 2015

	Concentration											
#	0	Mg	AI	Si	Ca	Zr	Gd	Au				
1	60	1	1	1	2	27	5	4				
2	67	-	1	1	2	23	4	3				
3	61	-	1	2	2	25	6	4				

Cubic fluorite

SAMUEL GINN College of Engineering

28 April 2015

 Concentration

 #
 O
 Mg
 Al
 Si
 Ca
 Zr
 Gd
 Au

 1
 59
 17
 18
 5

 2
 65
 18
 17

Pyrochlore

Samuel Ginn College of Engineering

28 April 2015

$Gd_2Zr_2O_7$ after CMAS at 1200°C

Electron Image 1

40 hours

	Concentration											
#	Mg	ΑΙ	Si	Ca	Zr	Gd						
1	0	0	15	7	9	14						
2	0	0	15	6	11	20						
3	0	0	14	6	7	12						
4	0	0	2	2	33	5						
5	0	0	2	3	34	7						
6	0	0	2	2	29	5						

Concentration											
#	Mg	AI	Si	Ca	Zr	Gd					
1	0	0	2	3	32	4					
2	0	0	2	3	38	6					
3	0	0	2	3	35	6					
4	0	0	15	6	6	13					
5	0	0	13	11	10	28					
6	0	0	5	4	18	7					

60 hours

28 April 2015

CCR 2015

SAMUEL GINN COLLEGE OF ENGINEERING

Gd₂Zr₂O₇ after CMAS at 1200°C – 60 hours

AUBURN UNIVERSITY

Samuel Ginn College of Engineering

28 April 2015

UNIVERSITY Samuel Ginn College of Engineering

28 April 2015

Microstructure of Sm₂Zr₂O₇

SAMUEL GINN College of Engineering

Phase content of Sm₂Zr₂O₇

Sm₂Zr₂O₇ after CMAS at 1400°C for 5 hours

28 April 2015

CCR 2015

Samuel Ginn College of Engineering

UNIVERSITY

Sm₂Zr₂O₇ after CMAS at 1300°C for 5 hours

Samuel Ginn College of Engineering

Sm₂Zr₂O₇ after CMAS at 1300°C for 5 hours

SAMUEL GINN College of Engineering

28 April 2015

Mg AI Si Ca Zr Sm Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 4 Spectrum 5 Spectrum 6

Atomic Percentage for a)

Sm₂Zr₂O₇ after CMAS at 1300°C for 5 hours

Atomic Percentage for b)

	0	Mg	AI	Si	Ca	Zr	Sm
Spectrum 1	58		1	15	6	1	15
Spectrum 2	66		1	13	5	1	11
Spectrum 3	62			14	5	1	14
Spectrum 4	60	2	3	12	6	4	10

Samuel Ginn College of Engineering

28 April 2015

	Concentration												
#	0	Mg	AI	Si	Ca	Zr	Gd	Au					
1	47	1	8	20	11	2	8	3					
2	60	3	10	18	7	1	1	2					
3	58	1	5	16	9	1	7	3					
4	53	6	5	17	18	-	-	2					
5	54	4	7	17	13	-	1	2					
6	55	3	10	19	10	1	1	2					

1,3: Bright spots Sm silicate

SAMUEL GINN College of Engineering

28 April 2015

Concentration												
#	0	Mg	AI	Si	Ca	Zr	Gd	Au				
1	62	-	1	1	2	27	4	3				
2	66	-	-	1	2	25	3	3				
3	58	2	5	7	10	13	3	3				
4	65	1	2	3	5	18	4	2				

Cubic fluorite

SAMUEL GINN College of Engineering

28 April 2015

Concentration										
#	0	Mg	AI	Si	Ca	Zr	Gd	Au		
1	47	-	-	10	6	6	23	9		
2	44	-	-	2	4	38	7	5		
3	51	-	-	7	7	15	15	5		
4	54	-	-	2	3	31	6	4		
5	40	-	-	8	7	12	26	9		
6	53	-	1	4	4	26	7	5		

1,3,5: Sm silicate 2,4,6: Cubic fluorite

Samuel Ginn College of Engineering

28 April 2015

Concentration										
#	0	Mg	AI	Si	Ca	Zr	Gd	Au		
1	67	-	1	-	-	18	12	2		
2	72	-	-	1	-	17	7	3		
3	68	-	-	-	-	19	13	-		
4	65	-	-	-	-	18	15	3		
5	66	-	-	1	-	18	12	3		

Pyrochlore

SAMUEL GINN College of Engineering

28 April 2015

$Sm_2Zr_2O_7$ after CMAS at 1200°C – 60 hours

20µm

Electron Image 1

Concentration								
#	Mg	ΑΙ	Si	Ca	Zr	Gd		
1	0	0	15	6	7	13		
2	0	0	16	6	5	14		
3	0	0	15	6	6	12		
4	0	0	0	3	33	3		
5	0	0	1	2	33	3		
6	0	0	1	3	37	4		

SAMUEL GINN College of Engineering

28 April 2015

Sm₂Zr₂O₇ after CMAS at 1200°C – 60 hours

Samuel Ginn College of Engineering

28 April 2015

ZrO₂-Sm₂O₃ phase diagram

T = tetragonal F = cubic fluorite M – monoclinic Pyr = pyrochlore C, B, H = Sm_2O_3 phases

28 April 2015

CCR 2015

Samuel Ginn College of Engineering

$(Gd_{0.8}Sm_{0.2})_2Zr_2O_7$ after CMAS at 1200°C for $(Gd_{0.8}Sm_{0.2})_2Zr_2O_7$ 60 hours $(Gd_{0.6}Sm_{0.4})_2Zr_2O_7$

20µm

Electron Image 1

	Concentration								
	#	Mg	AI	Si	Ca	Zr	Sm	Gd	
	1	0	0	14	5	5	10	0	
	2	0	0	19	7	6	17	0	
	3	0	0	17	6	8	14	0	
	4	0	0	17	6	8	14	1	
	5	0	0	1	3	41	5	0	
	6	0	0	3	3	46	6	0	
28 Apr	il 72 0	1 5	0	2	3	45	6	0	

CCR 2015

Samuel Ginn College of Engineering

Conclusions

- Coatings
 - Ni flash coating needed to obtain quality Re coating
 - Only 2 out of 20 Ir coatings on Re-coatings round samples were successful
 - No Ir coatings on rectangular samples were successful
- EBC materials
 - Reaction of $Gd_2Zr_2O_7$, $Sm_2Zr_2O_7$ and $(Gd,Sm)_2Zr_2O_7$ with CMAS evaluated
 - Pyrochlore dissolves in CMAS
 - Reprecipitates as lanthanide silicate and cubic fluorite phase

28 April 2015

CCR 2015