

IPT – Direct Power ExtractionNETL Office of Research and Development2015 Crosscutting Technology Research Review Meeting

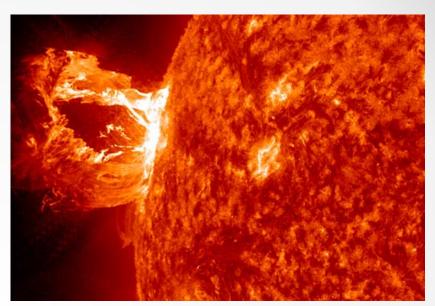
Rigel Woodside, Tom Ochs, David Huckaby, James Bennett, Lauren Kolczynski, Daniel Felman, Hyoungkeun Kim, David Cann, Jin Nakano, Anna Nakano, Clint Bedick, Duncan McGregor, Nathan Gibson, Vrushali Bokil, John Lineberry

Presentation Focus & Outline

Direct Power Extraction (DPE): technology which directly converts thermal/kinetic power to useable electrical power.

DPE Example: <u>magnetohydrodynamic generator</u>. This is our present focus, and <u>in particular we focus on the unique challenges of this</u>.

DPE Task Goal: Generate engineering data sets, simulation tools, and materials to further the prospect of using DPE


- Introduction
- Analysis
- Computational Simulations
- Materials Research
- Experimental Plans
- Conclusion

What is Magnetohydrodynamics (MHD)?

MHD describes the interactions of a magnetic field and an electrically conductive fluid

In Nature

- geomagnetic dynamo
- solar "wind" and solar "flares"

Picture of magnetic effect in solar flare (SOURCE: universetoday.com)

In Engineering

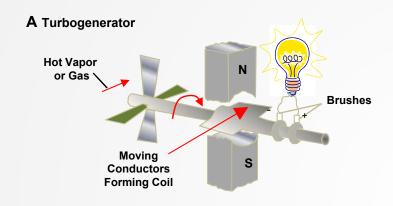
- Materials Processing
- Propulsion/Pumping
- Power Generation
 - Pulsed
 - Steady
 - Compact, no moving parts
 - High Efficiency Electrical Power Generation w/CO2 capture

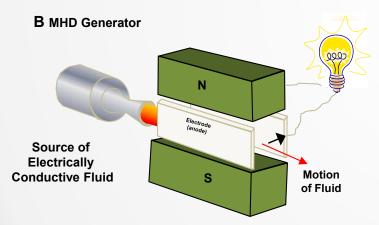
Lorentz Force Law

$$F = q(E + u \times B)$$

F is force vector

q is electric charge

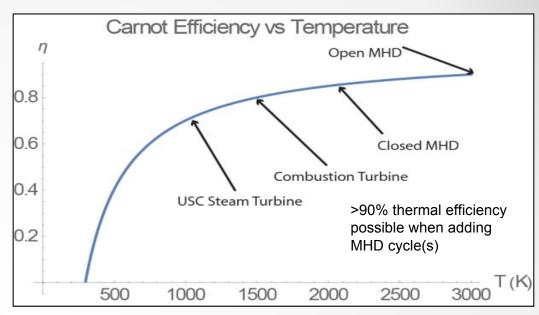

E is electric field vector

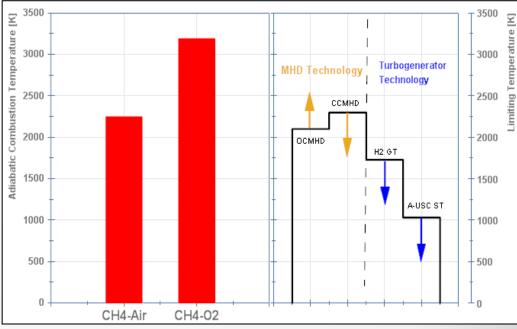

u is velocity vector

B is magnetic field vector

MHD Generator

- A. Turbo-generator Energy Conversion -> chemical (fuel) to thermal/kinetic to mechanical to electric
- B. MHD Generator Energy Conversion -> chemical (fuel) to thermal/kinetic to electric





(more) Direct Power Extraction

 $P \propto \sigma u^2 B^2$

where B is applied magnetic field σ is gas-plasma conductivity u is gas-plasma velocity

New Motivations: USDOE FE

Exhibit 3-117 Increases in Cost of Electricity Over Non-Capture Reference Case

	First Year Cost of Electricity (\$/MWh)											
Study Case	Capital	Fixed O&M	Variable O&M	Fuel	TS&M	Total (Less TS&M)	Increase in COE (%) ^a					
Non-Capture Reference, Air-fired SC w/o CCS	31.68	7.97	5.03	14.22	0.00	58.90						
Current OF Technology, O ₂ -fired SC w/ASU & CCS	53.72	11.81	6.47	19.08	5.83	91.07	54.6					
Case 1, O ₂ -fired SC w/Boiler Adv. Membrane & CCS	52.35	11.53	5.99	17.32	5.60	87.19	48.0					
Case 1A, O ₂ -fired SC w/NG Adv. Membrane & CCS	50.45	11.23	5.63	23.81	5.25	91.12	54.7					
Case 3, O ₂ -fired USC w/ASU & CCS	54.15	11.81	6.10	17.25	5.58	89.31	51.6					
Case 4, O ₂ -fired SC w/ASU & Co-Sequestration	48.85	10.79	4.78	17.60	5.67	82.02	39.3					
Case 5, O ₂ -fired SC w/ASU, Wet Recycle & CCS	53.66	11.80	6.47	19.11	5.91	91.03	54.5					
Case 6 O ₂ -fired SC w/ASU & Shock Compression	52.59	11.60	6.34	18.81	5.87	89.34	51.7					
Case 7, O ₂ -fired SC w/ASU, Adv. Boiler & CCS	53.13	11.65	6.32	18.87	5.89	89.96	52.7					
Cumulative Technology Case	48.52	10.66	4.30	14.68	5.28	78.15	32.7					

^aRelative to non-capture reference case

Exhibit 2-8 Cost Breakdown for Oxycombustion Power Plant

Cost Item	Percentage Contribution to COE [%]
ASU capital	29.5
ASU power	35.8
CO ₂ Compressor Capital	8.6
CO ₂ Compressor Power	19.1
TS&M	7.0
Total COE Increase	100%

Strategies for Improvement:

- Decrease ASU cost
- 2. Use oxygen to enable power generation -> MHD

Note: Oxygen established benefits for rockets & melting

NATIONAL ENERGY TECHNOLOGY LABORATORY

Source: 2012 NETL final report (DOE/NETL-2010/1405)

Analysis: Seeded Oxy-fuel Electrical Conductivity

Example Case

- Open-Cycle MHD scenario
- Consider oxy-methane combustion
 - (CH₄ + 2O₂ -> 2H₂O + CO₂ at ϕ = 1)
 - Utilize potassium carbonate as seed material (K₂CO₃)...K Ionization ~ 4.3 eV
- Thermal Equilibrium
 - Utilize NASA's Chemical Equilibrium Analysis (CEA) code for chemistry, ionization, and gas dynamics
- Gas Electrical Conductivity Relation (for comparative purpose):
 - T_e = T_g; Electrons all at mean speed; use Q_k = f(T_e); Q_{H20} from Spencer (1976)*.

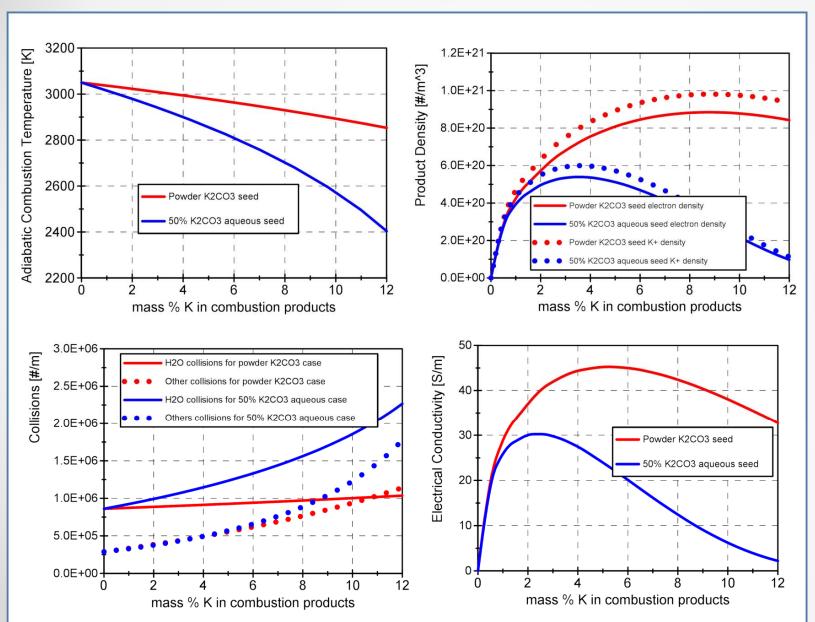
$$\sigma = \frac{n_e e^2}{m_e c_e \sum_k n_k Q_k} \qquad c_e = \langle v \rangle = \sqrt{\frac{8k_b T}{\pi m_e}} \qquad \text{-Neglects ion-electron collisions}$$

 n_e = electron number density [#/m³] e = electron charge = 1.60 x 10⁻¹⁹ [C] m_e = electron mass = 9.11 x 10⁻³¹ [kg]

 c_e = random thermal electron velocity [m/s] (estimated by the Maxwell-Boltzmann mean speed, $\langle v \rangle$)

 n_k = neutral species number density [#/m³]

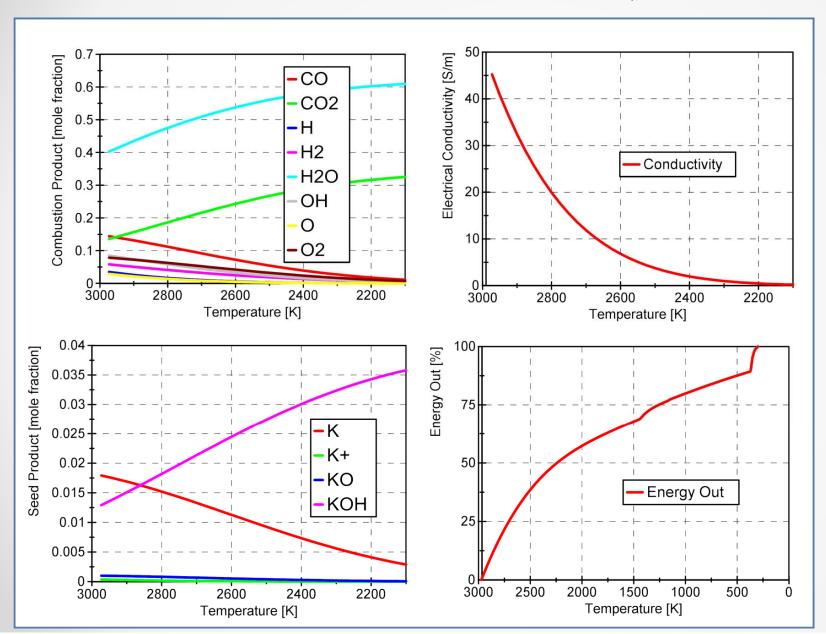
 Q_k = neutral species momentum transfer collisional cross section [m²]


 k_b = Boltzmann constant = 1.38 x 10⁻²³ [J/K]

T = electron temperature [K]

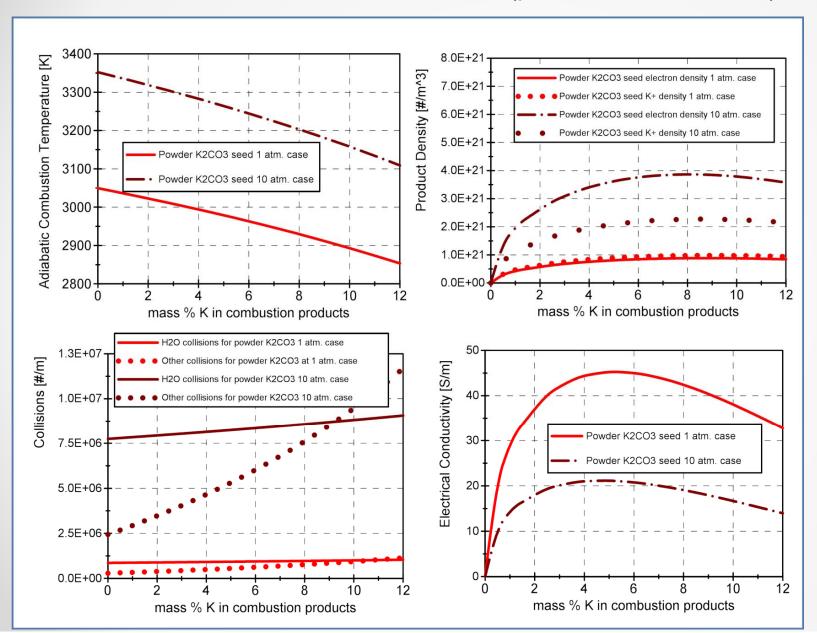
NATIONAL ENERGY TECHNOLOGY LABORATORY

Seeding: Getting Conductive Flow


1 atm. combustion, $\phi = 1$; Introduce K2CO3 seed as powder or dissolved in water solution

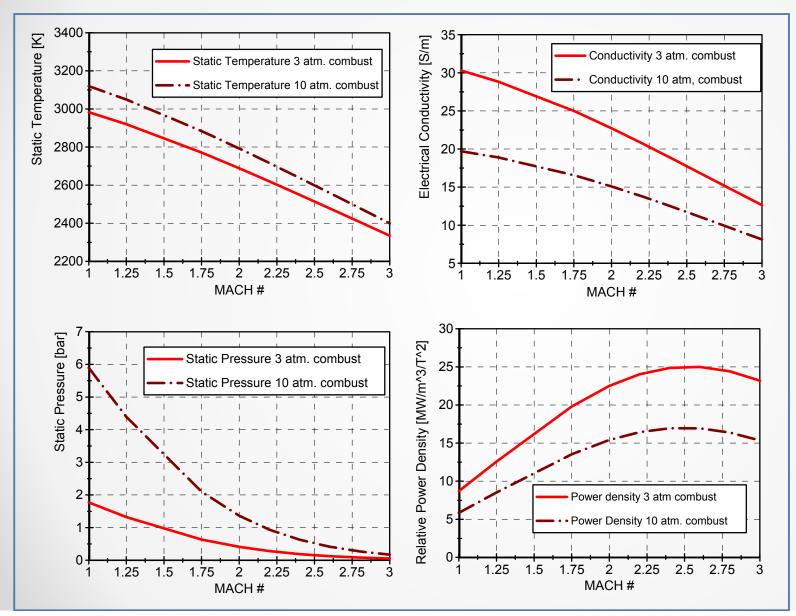
- Cond. ~10⁴
 greater with
 seed than
 without
- Adding seed cools gasses
- Optimal seed amount different for powder vs aqueous
- H₂O collisions dominate
- OH radicals:
 ~10%
 reduction in e-

Combustion Product Chemistry


1 atm. combustion, $\phi = 1$, 5.4 mass % K (powder K₂CO₃ added)

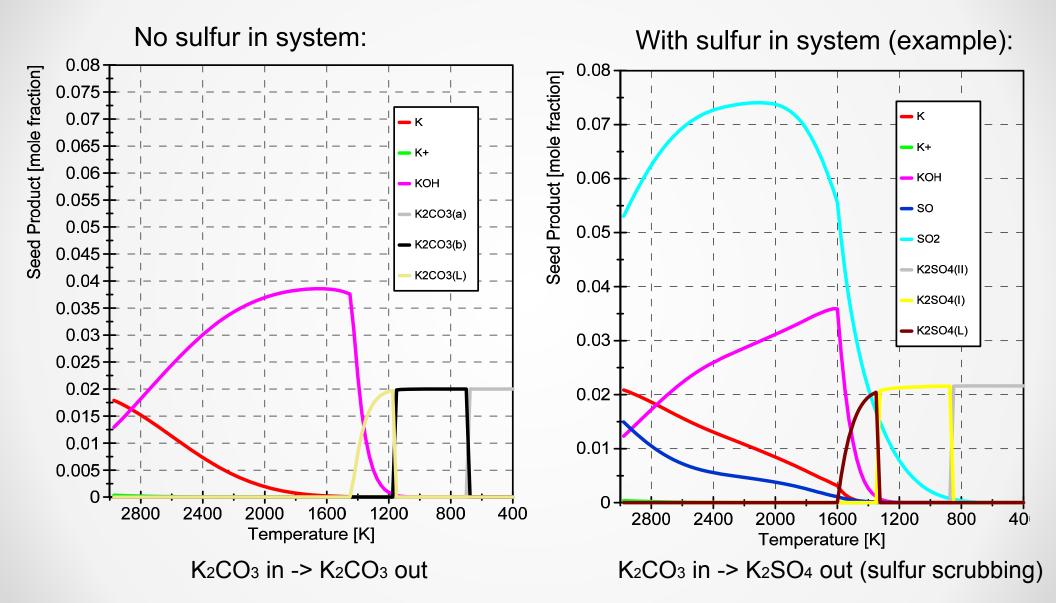
- Dissociation important
- Very nonlinear cond.
- Very little K+
- Reassociation maintains T
- At 2100K cond. ~10² less then at ~3000K
- Higher Temp means New oxy ~3x cond. from 1980s OCMHD

Effects of Combustion Pressure


 ϕ = 1, 5.4 mass % K (powder K₂CO₃ added)

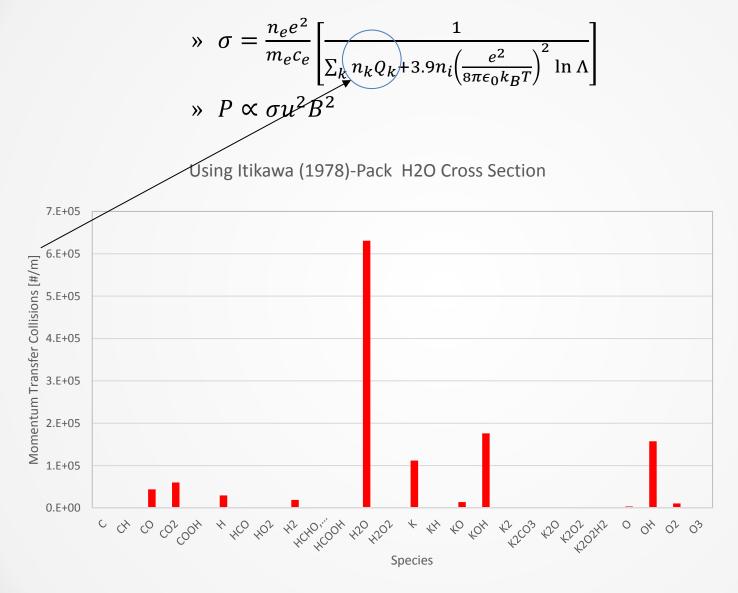
- More Temp. & e- at higher P
- Lower cond.
 at higher P
 due to
 collisions
- Optimal seed amount not very sensitive to P
- OH radicals: more important at higher P

Effect of Supersonic Expansion (get velocity)


 $φ = 1, 5.4 \text{ mass } \% \text{ K (powder K}_2\text{CO}_3 \text{ added)}; \text{ Relative Electric P}_{MHD} = σu^2/4$

- Expansion cools gasses
- Expansion reduces pressure
- Pressure is sub-atm. in channel at peak MHD power density
- Lower cond.
 but more
 power density
- Lower P still better but gap between Ps closes

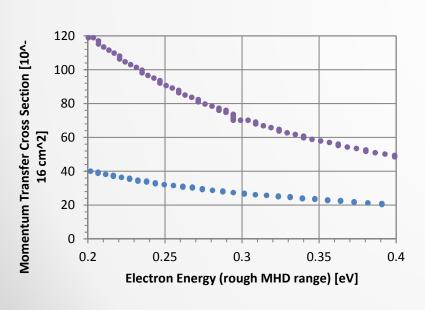
Seed Recovery

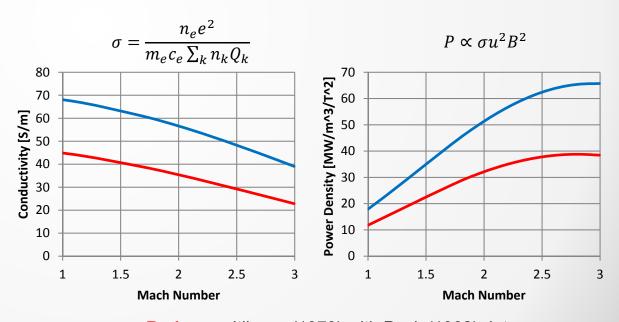

1 atm. combustion, $\phi = 1$, 5.4 mass % K (powder K₂CO₃ added)

Side Note: Seed aerosols/particles form at T_s where gas turbines operate (an issue for turbine integration)

Analysis: Collisional Cross Sections

Summarize electron-molecule collisional cross section data sets




Example of electron collisions with powder seeded methane-oxygen combustion products

H₂O is most important species for oxy-fuel MHD systems.

Analysis: H2O- "Root" Sources

- Two "root" H₂O data sources, "Pack" and "Yousfi" which multiple references derive values from
- Pack and Yousfi vary by a roughly calculated 60 to 70 % in the MHD range of interest
 - Results in differences for conductivity and power calculations
 - Example case below: kerosene + pure oxygen combustion expanding flue gas w/3 atm.
 combustion pressure

Pack (1962) - Itikawa (1978)
 Yousfi (1996) - Itikawa (2005)

Red: uses Itikawa (1978) with Pack (1962) data Blue: uses Itikawa (2005) with Yousfi (1996) data

NATIONAL ENERGY TECHNOLOGY LABORATORY

Analysis: new conditions of Oxy-MHD

This data is at 1 atm. pressure and is for comparative purposes.

Fuel: CH₄, Oxidant case:

1a: 36% O₂ enriched at 922K

1b: 36% O₂ enriched air at 922K

2a: air at 2200K

2b: air at 2200K

3a: $100\% O_2$ no pre-heat

3b: $100\% O_2$ no pre-heat

4a: 100% O₂ at 922K

4b: 100% O₂ at 922K

5a: 100% O₂ at 922K

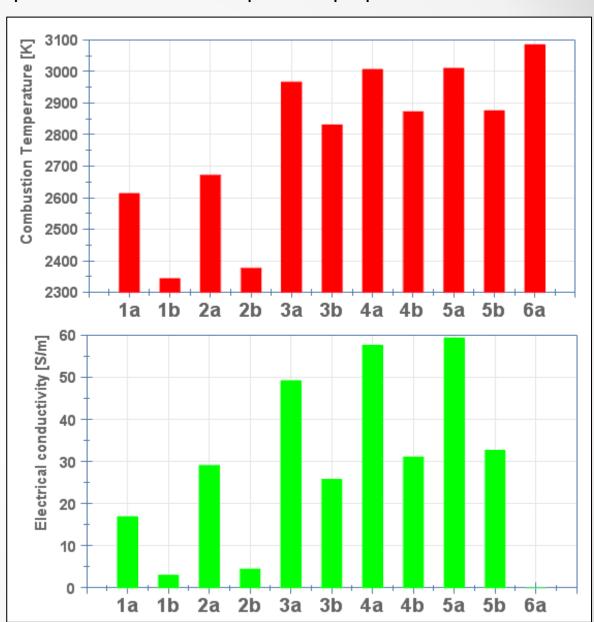
5b: 100% O₂ at 922K

6a: 100% O₂ at 922K

Stoichiometry for cases:

1,2,5,6: 0.9 stoic. (fuel rich)

3: 1.0 stoic.


Seeding for cases:

"a": powder K₂CO₃ at 5.4% potassium mass input

"b": 50/50 aqueous solution of K_2CO_3 at 1%

potassium mass input

"6a": No seeding

NATIONAL ENERGY TECHNOLOGY LABORATORY

Note: this analysis uses 1978 Itikawa-Pack collisional H20 data set

Analysis: Summary

 $P \propto \sigma u^2 B^2$

where B is applied magnetic field σ is gas-plasma conductivity u is gas-plasma velocity

- Seeded oxy-fuel much higher conductivity then legacy open cycle MHD systems
- Powder seeding offers notable advantage to oxy-fuel MHD over aqueous solution seeding
- Oxy-fuel MHD peak power densities at Mach 2.5 to 3
- Pressure needed to drive flow, but MHD power density decreases with increasing pressure
- Uncertainty in H₂O electron-molecule cross section most significant
- Note: Costs and engineering constraints/considerations often dictate final design specifications
 - E.g. max hall parameter and critical current densities

Simulation: NETL's 1D MHD code

Goal: Develop efficient open source code for general analysis and design of MHD generators

Programming language:

Python, Numerical libraries use C, C++ and Fortran Key libraries:

Cantera – thermodynamics, transport and reactions Assimulo – interface for SUNDIALS SUNDIALS – DAE integration package from Sandia

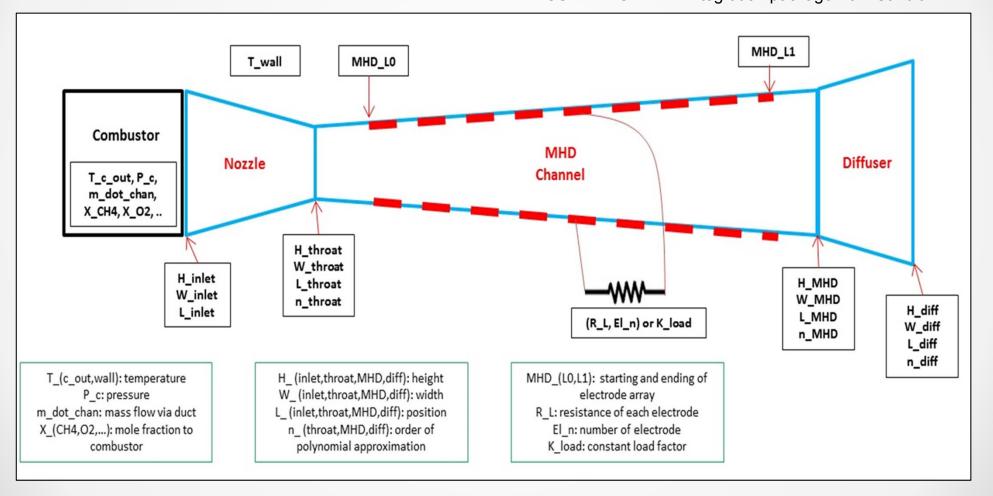


Diagram showing 1D code design variables for MHD Power train simulation

Input excel spreadsheet example

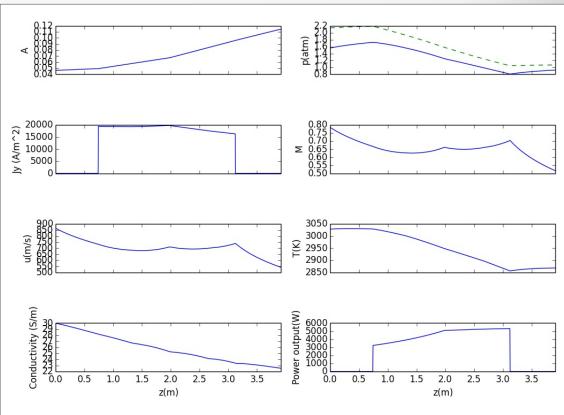
(1) Global parameters

A	А	В	С	D	Е
1	<comments></comments>				
2	<file options=""></file>				
3	Output Directory	in_out			
4	Output File	DPE1_out.>	ds		
5	CrossSectionFile		elps_CrossSe	ction_SEAM	1976.csv
6	GasTransport	drm19_with	KOH.cti		
7	GasTransportName	gas			
8	GasThermo	coal.cti			
9	GasThermoName	gas_small_	ash		
10	AshThermo	ash.xml			
11	CoalThermo	coal.cti			
12	<thermotable></thermotable>				
13	T_min	2000			
14	T_max	4000			
15	n_T	20			
16	logT	FALSE			
17	P_min	5.00E+02			
18	P_max	5.00E+06			
19	n_P	20			
20	logP	TRUE			
	LoadThermo	100			
22					
23	filename	thermo_tab	le.npy		
24	<study options=""></study>				
	Number	1			
26	<solver options=""></solver>				
	Chemical Equilibrium	TRUE			
	Pressure Iteration	FALSE			
29	Fixed Geometry	FALSE			
30	maxCPU	45			

(2) Stream composition

	\ /			
1	A	В	С	D
1	<fuel coal=""></fuel>			
2	Fuel stream (PRB Coal)			
3	HHV	kJ/kg	25454	
4	FA_mol	kmol/kmol	1	
5	FA_mass	kg/kg	1	
6	Ср	kJ/kg-K	1000	
7	Material	Mass Frac	Mole Fract	MW
8	C	0.6416	0.4834	12.0110
9	Н	0.0434	0.3892	1.0079
10	0	0.1411	0.0798	15.9994
11	N	0.0091	0.0059	14.0067
12	CI	0.0001	0.0000	35.4527
13	S	0.0093	0.0026	32.0660
14	Water	0.0501	0.0251	18.0153
15	SiO2(a-qz)	0.0516	0.0078	60.0843
16	AL203(a)	0.0227	0.0020	101.9613
17	CaO(cr)	0.0224	0.0036	56.0774
18	Fe2O3(cr)	0.0087	0.0005	159.6922
19	MgO(cr)	0.0000	0.0000	40.3044
20	TiO2(cr)	0.0000	0.0000	79.8788
21	Total	1.0000	1.0000	9.0494
22	Combust	0.8446	0.9610	-1
23	Moisture	0.0501	0.0251	-1
24	Ash	0.1054	0.0139	-1
25	<oxidizer></oxidizer>			
26	Oxidizer Stream			
27	Material	Mass Frac	Mole Fract	MW
28	02	0.9474	0.9574	31.9988
29	N2	0.0000	0.0000	28.0135
30	Ar	0.0526	0.0426	39.9480
31	Total	1.0000	1.0000	32.3373

(3) Conditions for simulation running


	A	В	С	D	E	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Υ
1	Section		Fuel Co	al		F	uel Gas			Oxidizer				Coal Tran	ransport Exhaust Recycle						Seed Input				
2	Name	Thermal Input	Flow	Flow	Temp	Flow	Flow	Temp	Stoich.	Flow	Flow	Temp	wt fract	Flow	Flow	Temp	wt fract	Flow	Flow	Temp	Kneeded	K min	Flow	Flow	Temp
3	Label	Q_fuel	m_dot_F	N_dot_F	T_F	m_dot_G	N_dot_G	T_O	phi	m_dot_O	N_dot_O	T_O	Y_transport	m_dot_T	N_dot_T	T_T	Y_R	m_dot_R	N_dot_R	T_R	K_S_rat	K_min	m_dot_S	N_dot_S	T_S
4	Key	Q	mdot	Ndot	T	mdot	Ndot	Т	phi	mdot	Ndot	Т	gas_to_coa	mdot	Ndot	T	wt	mdot	Ndot	Т	seed_to_coa	K_min	mdot	Ndot	T
5	Units	MWth	kg/s	kmol/s	K	kg/s	kmol/s	K	none	kg/s	kmol/s	K	kg/kg	kg/s	kmol/s	K	kg/kg	kg/s	kmol/s	K	kmol/kmol	kg K/kg	kg/s	kmol/s	K
6	1	1000	39.287	4.341	377	0.000	0.000	300	0.9	71.369	2.207	300	0.08	3.143	0.073	300	0	0.000	0.000	300	2.8	0.01	0.084	0.003	372
7	2	1000	39.287	4.341	377	0.000	0.000	300	0.9	71.369	2.207	600	0.08	3.143	0.073	300	0	0.000	0.000	600	2.8	0.01	0.084	0.003	372
8	3	1000	39.287	4.341	377	0.000	0.000	300	0.9	71.369	2.207	800	0.08	3.143	0.073	300	0	0.000	0.000	800	2.8	0.01	0.084	0.003	372
9	4	1000	39.287	4.341	377	0.000	0.000	300	0.9	71.369	2.207	1089	0.08	3.143	0.073	300	0	0.000	0.000	1089	2.8	0.01	0.084	0.003	372
10	<end></end>																								
																					potassium	placeholder		Update	
											Update										needed to	for		later for	
											later to										remove all	minimum		const	
	Comm										include										sulfur from	seed mass		wt% K	
11	ents										fuel gas										the coal	fraction		seeding	
40											_													_	

Running 1D simulation and output

(1) Running 1D simulation

position of gas is consistent with pre-tabulated gas_table.npy tarting Channel Simulation With T = 3028.75 (K)p = 1.55962 (atm)rho = 0.157333 (kg/m^3) sigma = 29.8632 (S/m) inal Run Statistics: ---Number of Function Evaluations Number of F-Eval During Jac-Eval Number of Error Test Failures Number of Newton Convergence Failures : IDA (BDF) Suppress Alg : False Tolerances (absolute) : [1.00000000e-06 1.00000000e-06 1.00000000e-06 1.00000000e-06 1.00000000e-06 1.00000000e-06] imulation interval : 0.0 - 3.915 seconds. lapsed simulation time: 10.82 seconds. he success = True leat flux = -5520.652272 kW lectric power output = -2241.35380986 kW otal power output = -7762.00608186 kW oule heating = 2240.75929043 kW lst energy balance = 3.7071263067 kW here is no transonic point. wer difference = -7765.71320817 kW

(2) Brief simulation result

(3) Output excel spreadsheet containing all numerical data

4	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N
1		X	Α	rho	u	р	T	theta	h	M	С	gamma	с_р	sigma
2	units	m	m^2	kg/m^3	m/s	Pa	K	m	J/kg	none	m/s	none	J/kg-K	S/m
3	0		0.645059	1.837938	98.97297	1800000	3330.55	C	-1877046	0.090909	1088.703	1.210255	1694.807	19.95832
4	1	0.	1 0.484843	1.832029	132.0803	1792960	3329.057	0	-1883257	0.121364	1088.302	1.21021	1694.786	19.94533
5	2	0.:	0.389327	1.824377	165.1497	1783944	3327.212	C	-1890801	0.151818	1087.812	1.210155	1694.759	19.93193
6	3	0.:	0.326295	1.814991	198.1734	1772977	3325.02	0	-1899641	0.182273	1087.236	1.210093	1694.726	19.91755
7	4	0.4	0.281464	1.80389	231.1442	1760096	3322.49	0	-1909744	0.212727	1086.575	1.210022	1694.685	19.90137
8	5	0.	0.247639	1.791096	264.0553	1745344	3319.627	0	-1921080	0.243182	1085.835	1.209944	1694.638	19.88233
9	6	0.	0.222384	1.776638	296.9001	1728772	3316.438	C	-1933622	0.273636	1085.017	1.209858	1694.582	19.85923

Simulation: 1D MHD code equations

Numerical methods: Governing equations solved as an initial value problem given the inlet conditions. The equations are a DAE (differential algebraic equation) system.

$$\frac{d}{dx}(\rho uA) = 0$$

$$\rho u \frac{dY_k}{dx} = R_k W_k$$

$$\rho u \frac{du}{dx} + \frac{dP}{dx} = J_y B_z - F_{friction}$$

$$\rho u \left(u \frac{du}{dx} + \frac{dh}{dx} \right) = (J_y E_y + J_x E_x) - Q_{wall}$$

$$\frac{d\theta}{dx} + \frac{\theta}{u} \frac{du}{dx} \left(2 + \frac{\delta^*}{\theta} - M^2 \right) = \frac{1}{2} C_f$$

$$J_y = \frac{\sigma}{1 + (\omega \tau)^2} \left[(E_y - uB_z) + \omega \tau E_x \right]$$

$$J_x = \frac{\sigma}{1 + (\omega \tau)^2} \left[E_x - \omega \tau (E_y - uB_z) \right]$$

- 5 main equations (mass, momentum, energy, chemical reaction, boundary layer) for the flow state.
- 2 equations (generalized Ohm's law) for the EM field.
- Need two additional equations.
 - Electrode Configuration
 - External Load

Segmented Faraday linear:

$$J_{x} = 0 \implies \begin{cases} E_{x} = \omega \tau (E_{y} - uB_{z}) \\ J_{y} = \sigma (E_{y} - uB_{z}) \end{cases}$$

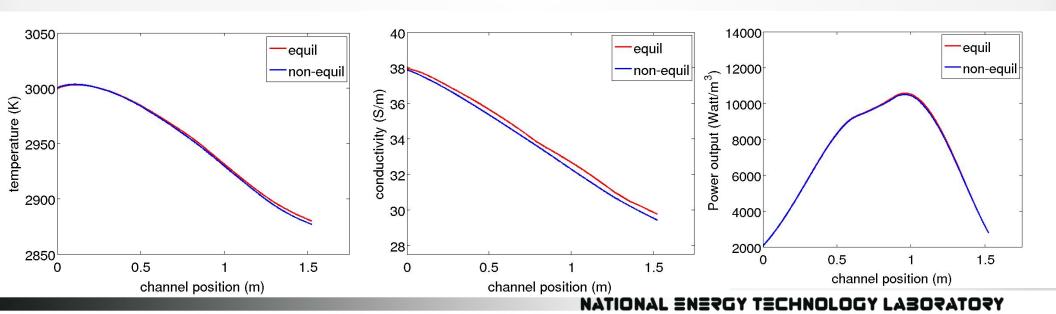
Fixed Load Resistance : R_L

$$K \equiv \frac{E_{y}}{uB_{z}} \implies K = \frac{\sigma}{\sigma + \sigma_{L}} = \frac{R_{L}}{R + R_{L}}$$

$$E_{y} = KuB_{z}$$

Simulation: Reaction/Composition Models

Species concentration are in flux due to recombinations. Non-equilibrium considered.


- Thermophysical model is for hydrocarbon products seeded with potassium.
 - DRM19 methane oxidation mechanism reduced from GRI30 Mech
 - Interaction of K w/ combustion products
 - K ionization products and reaction equations
 - "Coal" model (equilibrium only) includes condensed and non-condensed ash-species

Equilibrium Model:

- composition is in local thermodynamic equilibrium but still changes as the temperature and pressure change in the channel.
- composition and thermophysical properties are pre-tabulated functions of temperature & pressure
- code runs faster due to reduced number of equations (4 vs. 4 + N_species)
- reaction rates are not required to perform simulations

Non-Equilibrium Model:

- Explicitly track balance between the rates of convection, production and destruction of individual species.
- Better estimates of unburnt fuel and electron attachment may not that critical for energy performance estimates

Simulation: 1D MHD code equations

Numerical methods: Governing equations solved as an initial value problem given the inlet conditions. The equations are a DAE (differential algebraic equation) system.

$$\frac{d}{dx}(\rho uA) = 0$$

$$\rho u \frac{dY_k}{dx} = R_k W_k$$

$$\rho u \frac{du}{dx} + \frac{dP}{dx} = J_y B_z - F_{friction}$$

$$\rho u \left(u \frac{du}{dx} + \frac{dh}{dx} \right) = (J_y E_y + J_x E_x) - Q_{wall}$$

$$\frac{d\theta}{dx} + \frac{\theta}{u} \frac{du}{dx} \left(2 + \frac{\delta^*}{\theta} - M^2 \right) = \frac{1}{2} C_f$$

$$J_y = \frac{\sigma}{1 + (\omega \tau)^2} \left[(E_y - uB_z) + \omega \tau E_x \right]$$

$$J_x = \frac{\sigma}{1 + (\omega \tau)^2} \left[E_x - \omega \tau (E_y - uB_z) \right]$$

- 5 main equations (mass, momentum, energy, chemical reaction, boundary layer) for the flow state.
- 2 equations (generalized Ohm's law) for the EM field.
- Need two additional equations.
 - Electrode Configuration
 - External Load

Segmented Faraday linear:

$$J_{x} = 0 \implies \begin{cases} E_{x} = \omega \tau (E_{y} - uB_{z}) \\ J_{y} = \sigma (E_{y} - uB_{z}) \end{cases}$$

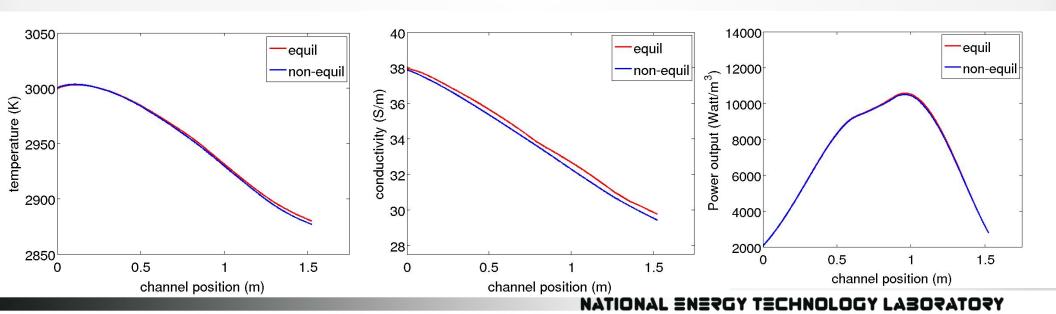
Fixed Load Resistance : R_L

$$K \equiv \frac{E_{y}}{uB_{z}} \implies K = \frac{\sigma}{\sigma + \sigma_{L}} = \frac{R_{L}}{R + R_{L}}$$

$$E_{y} = KuB_{z}$$

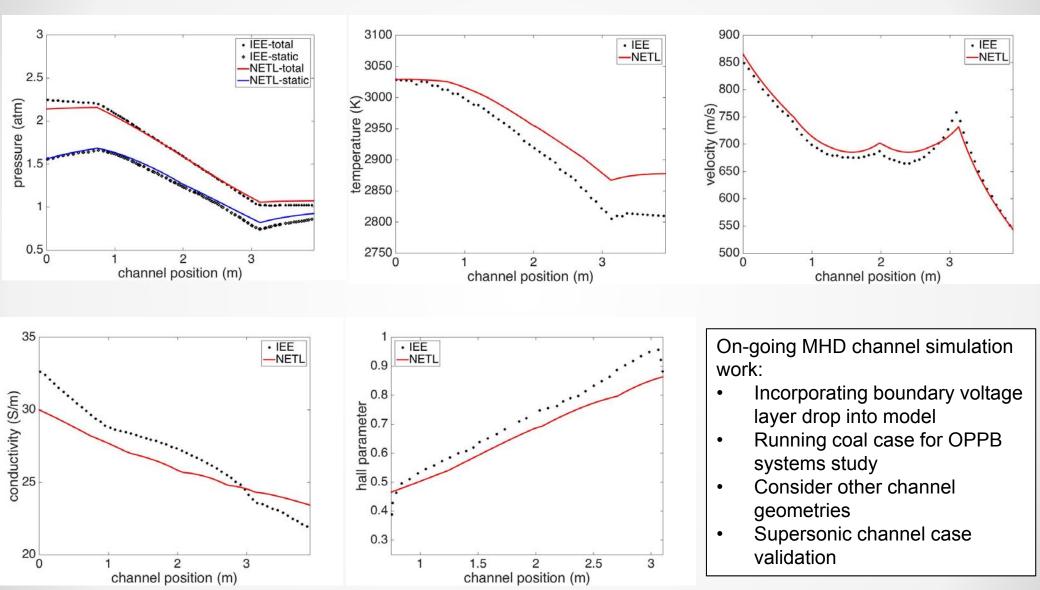
Simulation: Reaction/Composition Models

Species concentration are in flux due to recombinations. Non-equilibrium considered.


- Thermophysical model is for hydrocarbon products seeded with potassium.
 - DRM19 methane oxidation mechanism reduced from GRI30 Mech
 - Interaction of K w/ combustion products
 - K ionization products and reaction equations
 - "Coal" model (equilibrium only) includes condensed and non-condensed ash-species

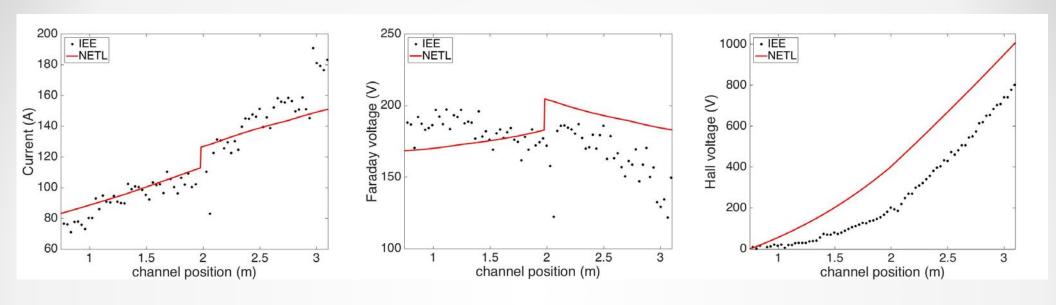
Equilibrium Model:

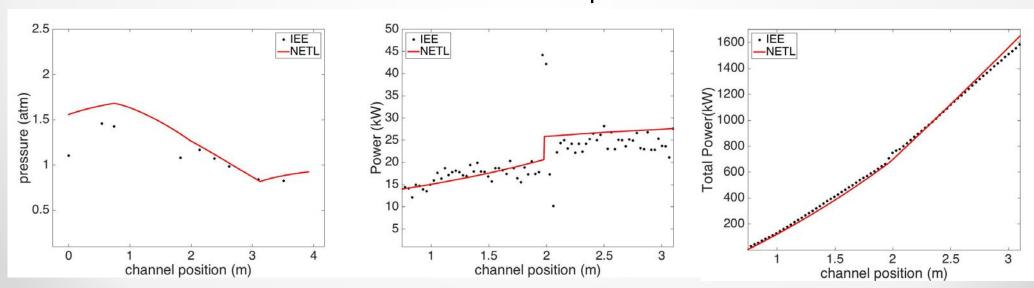
- composition is in local thermodynamic equilibrium but still changes as the temperature and pressure change in the channel.
- composition and thermophysical properties are pre-tabulated functions of temperature & pressure
- code runs faster due to reduced number of equations (4 vs. 4 + N_species)
- reaction rates are not required to perform simulations


Non-Equilibrium Model:

- Explicitly track balance between the rates of convection, production and destruction of individual species.
- Better estimates of unburnt fuel and electron attachment may not that critical for energy performance estimates

Simulation: 1D code verification


IEE Mark-II: theoretical simulation work by UTSI & IEE in 1987

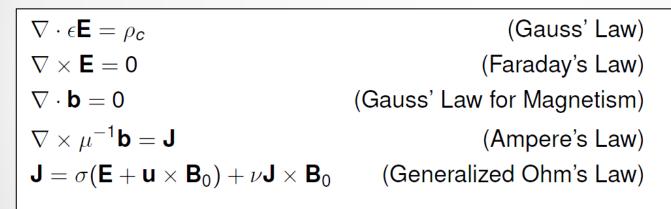

NATIONAL ENERGY TECHNOLOGY LABORATORY

Simulation: 1D code validation

IEE Mark-II: subsonic MHD channel testing from late 1980s*

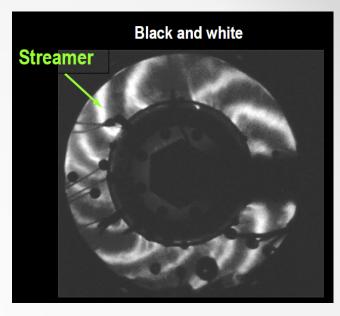
Simulation results are consistent with experimental data obtained.

NATIONAL ENERGY TECHNOLOGY LABORATORY

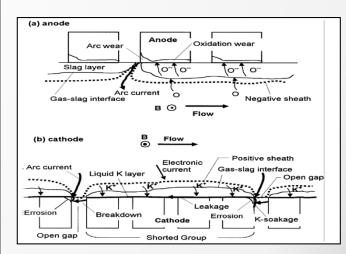

* Ref: Lineberry et al., AIAA-87-1214, 1987, U.S. - China Cooperative MHD Experiments at IEE Academia Sinica

Simulation: Toward detecting arcs

We are interested in detecting arcs (or streamers) by measuring the magnetic fields they induce. We therefore wish to model these magnetic fields which may be observable outside the channel.


Forward Model and Computation

- Assume magnetostatic equations applicable
- Utilize NETL1D MHD code for fluid & state conditions
- Assumes Induced field << applied field (B₀)



 ${f B}_0$ applied magnetic flux density ${f b}$ induced magnetic flux density ${f u}$ fluid velocity electrical permitivity ${f \nu}$ electron mobility

 ${f J}$ electric field current density ho_c charge density ho magnetic permeability σ electrical conductivity

Tokyo Tech disc generator* showing arcs ("streamers") in channel

Arcing is known to be a major problem for MHD channel materials**

NATIONAL ENERGY TECHNOLOGY LABORATORY

**Source: kayukawa (2003).

*Source: Okuno Presentation (2007)

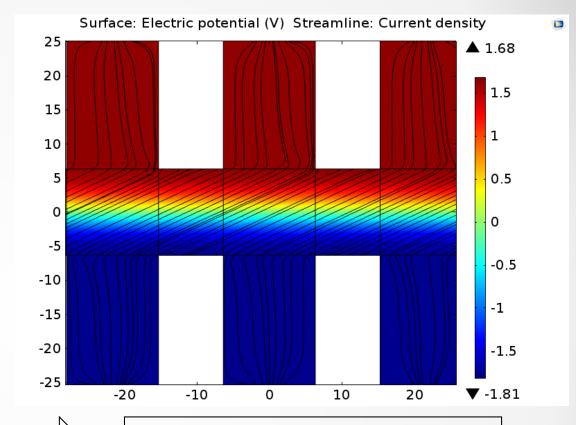
Simulation: 3D MHD Currents

Magnetostatic MHD current

$$\mathbf{J} = \sigma(\mathbf{E} + \mathbf{u} \times \mathbf{B}_0) + \mathbf{J} \times \boldsymbol{\beta}$$

$$\nabla \cdot \mathbf{J} = 0$$

$$\mathbf{E} - \nabla V = \mathbf{0}$$


Equivalent to

$$\underline{\sigma} = \frac{\sigma}{1 + \beta^2} \begin{pmatrix} 1 & \beta & 0 \\ -\beta & 1 & 0 \\ 0 & 0 & 1 + \beta^2 \end{pmatrix}$$

$$\nabla \cdot \underline{\sigma} \boldsymbol{E} = -\nabla \cdot \underline{\sigma} \boldsymbol{u} \times \boldsymbol{B}_0$$

$$\mathbf{E} - \nabla V = \mathbf{0}$$

This can be solved for using standard PDE based FEM (eg Comsol).

$$eta =
u \mathbf{B}_0$$
 $\beta = |eta|$ Hall parameter $\underline{\sigma}$ effective conductivity V Voltage

The interesting aspect of MHD currents is they are not necessarily perpendicular to electric field gradient

Future work: Inverse problem theory and application based on forward simulation

Channel Materials Selection & Design

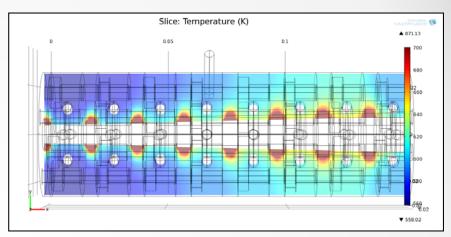
MHD Electrode Requirements

- 1. Good electrical conductivity
- 2. Adequate thermal conductivity
- 2. Resistance to electrochemical corrosion (seed/slag)
- 3. Resistance to erosion by high velocity particle laden flow
- 4. Resistance to thermal shock
- 5. Compatibility with other system materials
- 6. Resistance to/minimization of arc attack

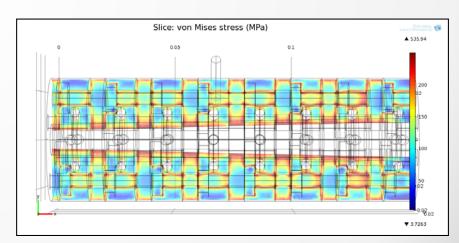
Candidate Hot Electrodes Fabricated

- 1) $La_{0.95}Mg_{0.05}CrO_3$
 - identified as promising from 1970s USSR-USA work
- 2) $88\% \text{ ZrO}_2 12\% \text{ Y}_2\text{O}_3$

baseline from 1970s USSR-USA joint work


- 3) 89% ZrO₂ 10% Sc₂O₃ 1% Y₂O₃ well characterized for fuel cells
- 4) 82% HfO₂ 10% CeO₂ 8% Y₂O₃ identified as promising from 1970s USSR-USA work
- 5) $83\% \text{ HfO}_2 17\% \text{ In}_2\text{O}_3$

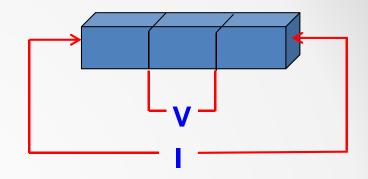
PNNL selection from late 1980s but untested


- Oxide powders generated using co-precipitation
- Samples fabricated via both "spark plasma sintering" (SPS) and pressureless sintering.

Fabricated sample goal: Establish baseline characterizations for hot electrodes using known materials

NETL Thermo-mechanical FEM Analysis of 1MWt round copper electrode MHD Channel

FEM Highlights problems due to CTE mismatches and mechanical fastening

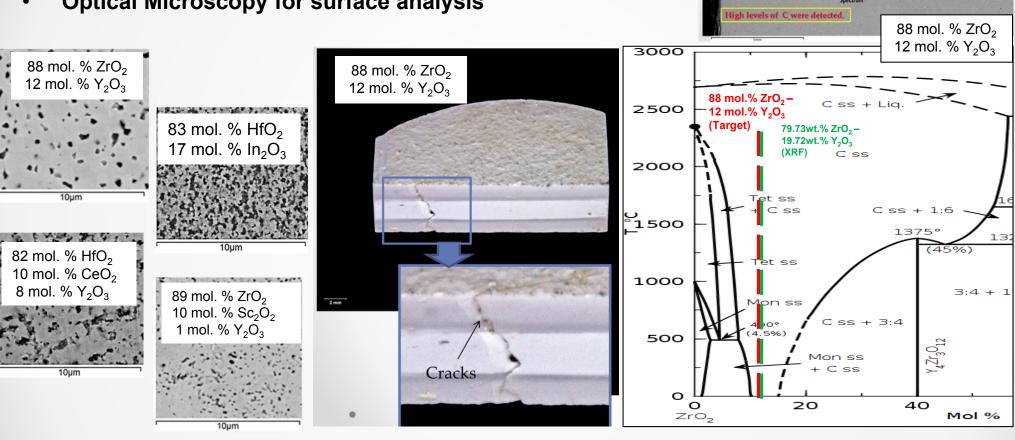



Stress concentrations in ceramic insulators can cause failure

NATIONAL ENERGY TECHNOLOGY LABORATORY

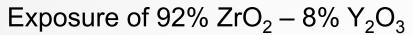
Electrical resistivity measurements

- Measurements taken with 4-wire approach
 - DC resistivity
 - AC resistivity (impedance spectroscopy)
 - 1Hz- 5 MHz
- 4 pressureless sintered compositions tested converged to resistivity values on order of 20 to 40 Ω-cm at 900°C
 - Comparable to existing literature values (with T extrapolation)
- All samples exhibited contact resistance due to Pt electrodes
 - Will be a consideration in the design of MHD systems
 - In addition, non-Ohmic behavior was seen in some samples
 - Could be due to work function mismatch or electrode/ceramic reactions
- All samples showed grain/grain boundary mechanisms
 - Electrically heterogeneous oxygen non-stoichiometry
 - On-going work:
 - Compare to SPS samples (preliminary results show some differences)
 - Increase testing temperature
 - Note resistivity very sensitive to T

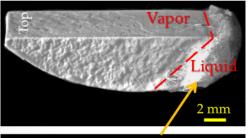


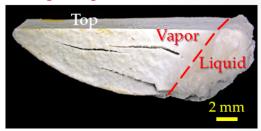
High temperature cell
NorECs Probostat in
Carbolite tube furnace

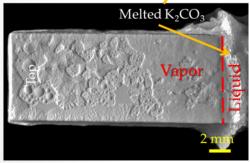
Microstructure & Phase Analysis of SPS Samples

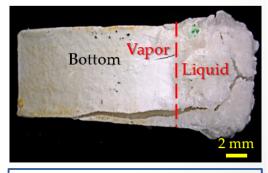

- **SEM** imaging of microstructure
 - SEM-EDS for surface chemistry profiling
- XRF for bulk chem. and XRD for phase identification
- **Optical Microscopy for surface analysis**

- SPS samples had numerous cracks -> processing far from optimized
- Carbon contamination likely from SPS system (coloration above) -> could be causing issues
- Microstructure suggests high porosity which varies through cross section -> may be related to carbon
- 12%YSZ single phase -> multiple phases in others due to powder prep. and/or sintering issues

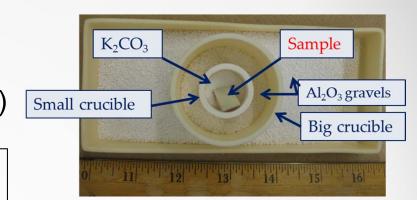

Seed Material Interaction with Samples


- Expose samples to K₂CO₃
 - Based on ASTM test C987
 - 24 hrs at 1500°C in air (semi-closed w. lid)




-> Extra sample made using SPS <-

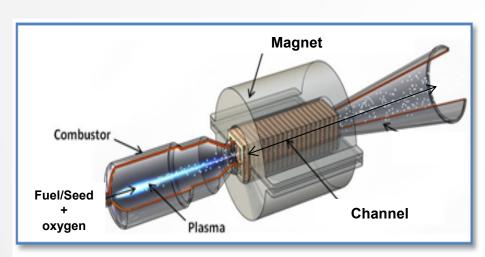
— — Approximate locations of vapor/liquid interface



Sample surface on the same day after the exposure to K_2CO_3 .

Sample surface at ≈ 3 weeks after the exposure to K_2CO_3 .

Optical (above) and SEM of cross sections indicate potassium penetration and interaction leading to a degradation of material

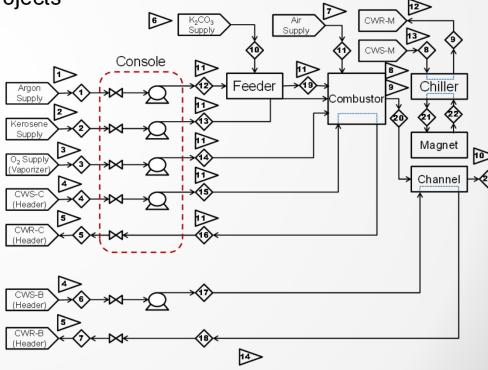

Future work:
Utilize Yonejkura "hot stage"
Confocal scanning laser
microscope (Olympus)

NETL MHD Laboratory

Under construction: 7/10/2015 scheduled completion date

- Lab goal: Build "Test bed" for simulation validation and MHD materials performance and durability studies
 - System flexibility is important
 - leverage existing commercial equipment/knowledge to extent possible
 - Incremental Design/R&D approach

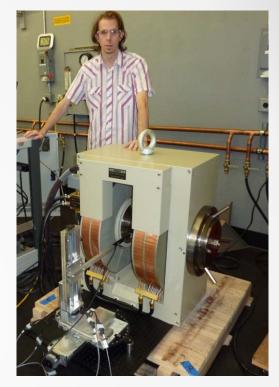
Low "TRL" level: not doing demonstration projects


Initial Conditions:

Fuel: K-1 kerosene

Oxidant: 100% oxygen

Seed: K2CO3 powder w/ argon

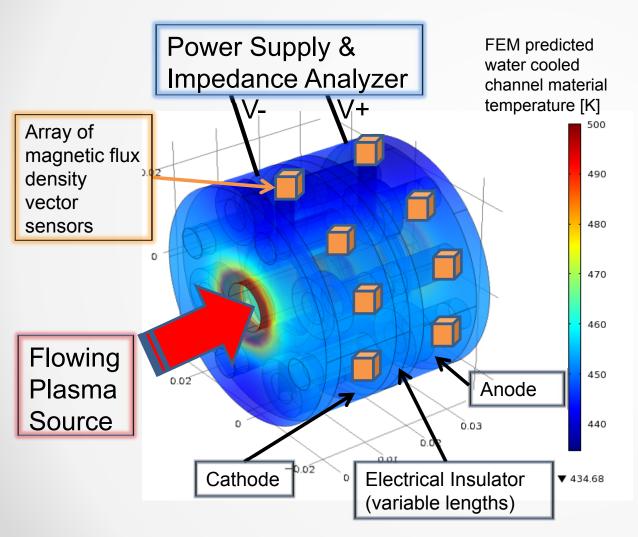

Nominal 1 MWt sized system is target

NATIONAL ENERGY TECHNOLOGY LABORATORY

MHD Laboratory Equipment

Major Test Hardware

- TAFA 8200 console, powder feeder, and HVOF combustor
 - Up to 10 bar combustion
 - Nominal Mach 1.8 output
 - Up to 0.5 MWt through console
- GMW custom electromagnet
 - Adjustable 2 Tesla field at ~50mm gap
 - Adjustable pole caps with optical access
- Up to 12,000 cfm bag house and blower
- 150 GPM at 70F delta chiller
- 248nm Excimer laser
- Up to 10,000 cfm liquid oxygen vaporizer
- 20'L x 12'W sound insulated test chamber


Lab electromagnet

High efficiency HVOF combustor

Planned Experiment: Back-powered channel

- HVOF powered circular hall channel -> power supply controls current into channel
 - No magnetic field in this test
- Establish effective plasma conductivity using various insulator lengths
- Establish spatial and temporal arc characteristics in channel

Copper Electrode

Plasma

Boron Nitride (BN)

Copper Wire

see slide 20

FEM electromagnetic model ->

Model current paths in

conductive parts

Arcs location causes spatially varying mag fields.

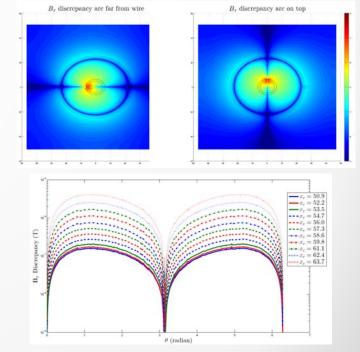


Figure showing concept of experiment

Commercial sensors measure these induced fields nT to µT

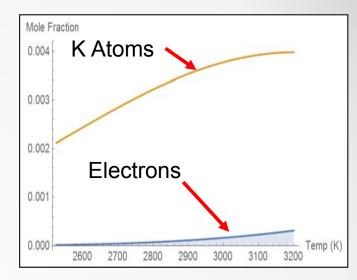
Experimental: Photoionization

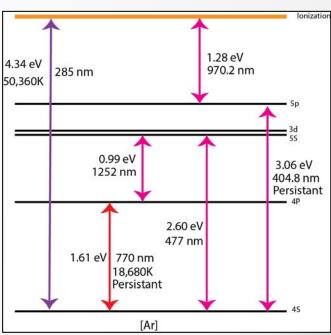
What we know:

- Combustion driven MHD plasma is a partially ionized system which rapidly reaches thermal equilibrium
 - Very little seed introduced actually ionizes (~1% of it)
 - lonization rapidly drops as temp decreases-> limits low temp.
 of cycle (MHD open cycle low temp: ~ 2200 to 2500K)
 - However, local non-equilibrium likely persists near wall due to large gradient and arcing
- Ionization potential of K is 4.34 eV
 - So "photoionization" of potassium using UV photons < 285nm
- Good spatial and temporal control of directed energy with lasers

What we would like it to do:

 Apply directed laser sheet across electrode surfaces


To control and mitigate arcing issues


Apply laser beam to enhance ionize within a MHD channel

Decrease seed use
Extend low temperature

Initial Experiment:

- Flash potassium seeded HVOF combustion products with Excimer laser (248nm)
 - Measure absorption
 - Measure relaxation time scales

Electron transitions for K

Group Publications (last 9 months)

- Kim, Hyoungkeun et.al.; "Numerical modeling and simulation of magnetohydrodynamic generators", 2014 APS meeting.
- McGregor, Duncan et. al.; "Towards Estimating Current Densities in Magnetohydrodynamic Generators", 2014 CCP Proceedings.
- Ochs, Thomas et al.; "Improvements in Exergetic Efficiency in High-Temperature Oxyfuel Combined Cycle Systems", Paper and Presentation at 2014 PCC conference.
- Woodside, Rigel; "Retrospective and Prospective Aspects of MHD Power Generation", Presentation at MHD workshop, 10/01/2014.
- Woodside, Rigel et.al.; "MHD Energy Conversion R&D", Poster and Presentation of NETL MHD R&D at MHD Workshop, 10/02/2014.

Questions?

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.