

Award No. DE-FEOO08719

Synergistic Computational and Microstructural Design of Next-Generation High-Temperature Austenitic Stainless Steels

Ibrahim Karaman and Raymundo Arroyave

Program Manager: Dr. Patricia Rawls / Dr. Jason Hissam

Students: T. Jozaghi, N. Chaudhary, Dr. Shujuan Wang

Department of Material Science and Engineering Texas A&M University

- Design new austenitic stainless steels (ASS) for advanced ultra supercritical combustion coal-fired power systems
 - ✓ High temperature strength
 - ✓ High ductility
 - ✓ Good creep resistance
 - ✓ Good high temperature oxidation/corrosion resistance
- Design of micro-alloying additions, heat treatment schedules, and microstructure
 - Cost-effective alternatives to Ni-base superalloys
 - Higher-temperature alternatives to ferritic steels

S SCIENCE

- Austenitic structure
- High density of low energy nano-twin boundaries
- Nano-scale precipitates, intermetallics, laves phases stable at high temperature
- Formation of alumina surface oxide

Nano-precipitates (carbides, intermetallics)

Laves phase

Deformation twinning with fine thickness

• THE STUDY OF DEFORMATION TWINNING

- Evolution with applied strain
- Thermal stability
- Interactions of twins
- Effect of deformation twins on mechanical response

O NOVEL AFASS ALLOY DESIGN

- Initial characterization and evaluation of first-generation alloys
- Processing of candidates from first-generation alloys
- Introducing the second-generation alloys
- Characterization, evaluation, and processing of second generation alloys

ERIALS SCIENCE

[Fe	Ni	Cr	Mn	Nb	Si	AI	Мо	С	N	В	Deformation twin	FCC stability at high temperatures
Ī		Fe-Mn-C	Ba.			13					1.1			✓	×
		316L	Ba.	12	17.8	1.8		0.5		2.4	0.03			✓	?
	C ¹	316	11 0	177			0.44		2.2	0.00	0.0		×	?	
	Single	L+N	ва.	8.11	17.7	1.1		0.44		2.3	0.08	0.2		×	?
ľ	crystals	316+N		10	17	1.5		0.6		1.8	0.05	~0.1		✓	\checkmark
		316	Ba.	9.5	17.5	1.6		0.72		2.51	0.03			×	\checkmark
			Do	20	11	h	0.04	0.15	<u> Э Е</u>	<u> Э Б</u>	0.00		0.01		

First-Generation Alloys

all in wt%	Fe	Ni	Cr	Mn	Nb	Si	AI	Ti	Мо	V	С	Ν	В	Twinin g	FCC stability	Precipitat es	Alumin a
Alloy 1	Ba.	20	14	2	0.86	0.15	2.5	0	2.5	0	0.08	0	0.01	x	\checkmark	×	\checkmark
Alloy 2	Ba.	12	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0	?	×	×	?
Alloy 3	Ba.	17	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0	?	×	×	?
Alloy 4	Ba.	10	16	10	0	0.5	3	0	2.5	0	0.05	0	0	?	×	×	?

 Alloy 1: Need to validate the predictive power of thermodynamic databases and models developed (oxidation, twinning ability). Selected based on the literature material developed by Yamamoto et al., at ORNL

- Alloy 2: lower expensive Ni, V to form precipitate at high temp., N to improve twin-ability. Nb is for carbides and Laves phases
- Alloy 3: higher Ni than alloy 2 for FCC stability
- Alloy 4: between Alloy 1 (AFA) and 316 SS (twin)

Second-Generation Alloys

wt.%	С	Mn	Ni	Мо	ΑΙ	Cr	Si	Fe	Twinin	FCC	Precipitat	Alumin
PGAA	0.000		4745	0.04		4 5 0	0.40		g	stability	es	а
2	0.088	9	17.15	2.24	3.11	15.3	0.19	bal.	?	\checkmark	×	?

LS SCIENCE

• THE STUDY OF DEFORMATION TWINNING

- ➤Evolution with applied strain
- Thermal stability
- Interactions of twins
- Effect of deformation twins on mechanical response

QUESTIONS AND CHALLENGES

- Fundamental study of recovery and recrystallization (ReX) of deformation twins in low SFE steels in the presence of various densities of dislocations
- The optimum thermo-mechanical processing path for high volume fraction of deformation twins
- Role of in-situ carbides and nitrides during recovery and ReX in the presence of deformation twins?
- Role of deformation twins and nano-particles on creep and stress rupture behavior of designed steels.

MATERIALS SCIENCE & ENGINEERING TEXAS A&M UNIVERSITY

316 Stainless Steel, 40% Tension at RT

7

800

600

400

200

True Stress (Mpa)

*** TWINNING STUDIES**

316 Stainless Steel, Tension at RT

 6.6 ± 4.7 62.6 ± 4.6 5.8 ±1.5 11.0 ± 7.3 77.3 ± 3.1 9.4 ± 1.6

MATERIALS SCIENCE

- The twin density increases with increasing strain.
- Twin width stays lacksquaresimilar.

ERIALS SCIENCE

Thermal Stability of Deformation Twins During In-situ TEM Heating

316 Stainless Steel, Strained 20%

The nano twins are stable under 900 °C, no coarsening and detwinning were discerned. Dislocations were recovered by annealing.

RIALS SCIENCE

O NOVEL AFASS ALLOY DESIGN

Initial characterization and evaluation of first-generation alloys

Processing of candidates from first-generation alloys

- Introducing the second-generation alloys
- Characterization, evaluation, and processing of second generation alloys

. . .

							FI	rst-	Gen	erat	ION A	lloys	5
all in wt%	Fe	Ni	Cr	Mn	Nb	Si	AI	Ті	Мо	v	С	N	В
Alloy 1	Ba.	20	14	2	0.86	0.15	2.5	0	2.5	0	0.08	0	0.01
Alloy 2	Ba.	12	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0
Alloy 3	Ba.	17	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0
Alloy 4	Ba.	10	16	10	0	0.5	3	0	2.5	0	0.05	0	0

Alloy 1: Need to validate the predictive power of thermodynamic databases and models developed (oxidation, twinning ability).
 Selected based on the literature material developed by Yamamoto et al., at ORNL

• Alloy 2: lower expensive Ni, V to form precipitate at high temp., N to improve twin-ability. Nb is for carbides and Laves phases

• Alloy 3: higher Ni than alloy 2 for FCC stability

• Alloy 4: between Alloy 1 (AFA) and 316 SS (twin)

First-Generation Alloys

	✓ Fully austenite	
	 Uncontrollable NbC precipitation 	Alloy 3
Alloy I	× No Twinning	
	✓ Alumina scale formation	Alloy 4
	 Second phase formation 	
	 Uncontrollable Ti-rich NbC 	

	~	Austenite, intra-granular second phase
Alloy 3	×	Uncontrollable Ti-Nb carbo-nitrides and AIN precipitation
Alloy 4	×	Second phase formation

MATERIALS SCIENCE & ENGINEERING TEXAS A&M UNIVERSITY

all in wt%	Fe	Ni	Cr	Mn	Nb	Si	AI	Ti	Мо	V	С	N	В
Alloy 1	Ba.	20	14	2	0.86	0.15	2.5	0	2.5	0	0.08	0	0.01
Alloy 2	Ba.	12	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0
Alloy 3	Ba.	17	14	10	1	0.2	2.5	0.3	2.5	0.5	0.08	0.01	0
Alloy 4	Ba.	10	16	10	0	0.5	3	0	2.5	0	0.05	0	0

What is Materials Design?

Materials Design is ultimately the solution to an inverse problem Ideally, MD should be materials-agnostic (not realistic at this tim

Design Criteria

- Alumina Formation
- Low SFE Twinnability
- Large stability region for FCC
- Low Ms
- Competing factors:
 - Al necessary for alumina formation
 - Al increases SFE, decreases twinnability
 - Al stabilizes BCC against FCC
 - Optimization is necessary

Testing the 'Effective Growth Constant Criterion'

=7(d

Third Element Effect Predominance Maps

N^{o*}cr

ENGI

TEXAS A&M

[6

Testing Third Element Effect Predominance Maps

0.2

N^{o⁺}_{Cr}

0.3

0.5

0.1

0.2

0.3

N°[∗]_{Cr}

0.5

0.1

0.2

N°[∗]_{Cr}

0.3

0.4

0.5

Comparison of two Criteria

	Fe	Ni	Cr	Al	Si	Mn	Мо	Nb	Ti	V	с	В	Cu	W	Effective Valence Model	Third Element Model	Experimental Result	Ref
AFA Alloy 1	Bal.	25.02	14.06	3.06	0.14	2.00	2.00	1.02	0.05	0.05	0.0470	0.0096	0.52	0.96	Pass	Pass	Pass	[64]
AFA Alloy 2	Bal.	25.05	13.99	3.03	0.15	2.00	2.00	1.00	0.05	0.05	0.2040	0.0104	0.51	0.96	Fail	Pass	Fail	[64]
AFA Alloy 3	Bal.	25.05	14.03	4.13	0.14	2.00	2.00	0.99	0.05	0.05	0.0490	0.0100	0.52	0.96	Pass	Pass	Pass	[64]
AFA Alloy 4	Bal.	25.03	13.97	4.11	0.14	2.00	1.99	1.01	0.05	0.05	0.2090	0.0104	0.52	0.96	Pass	Pass	Pass	[64]
AFA Alloy 5	Bal.	25.02	13.84	3.06	0.13	1.99	2.00	1.02	0.05	0.05	0.1060	0.0078	0.51	0.96	Pass	Pass	Pass	[64]
AFA Alloy 6	Bal.	20.05	13.84	3.07	0.13	2.00	1.99	1.01	0.05	0.05	0.2000	0.0080	0.52	0.97	Fail	Pass	Fail	[64]
AFA Alloy 7	Bal.	25.05	13.98	4.17	0.14	1.99	1.98	2.53	0.05	0.05	0.2010	0.0092	0.52	0.97	Pass	Pass	Pass	[64]
AFA Alloy 8	Bal.	12.08	13.84	2.52	0.13	4.99	0.15	1.03	0.05	0.05	0.1710	0.0110	3.04	0.15	Fail	Fail	Fail	[64]
AFA Alloy 9	Bal.	12.05	13.84	2.52	0.13	6.79	0.15	1.01	0.05	0.05	0.2000	0.0090	3.06	0.15	Fail	Fail	Fail	[64]
AFA Alloy 10	Bal.	12.04	13.92	2.52	0.14	9.93	0.15	1.01	0.05	0.05	0.1000	0.0090	3.06	0.14	Pass	Fail	Fail	[64]
AFA Alloy 11	Bal.	12.09	13.89	2.54	0.14	9.96	0.15	1.01	0.05	0.05	0.2000	0.0090	3.06	0.15	Fail	Fail	Fail	[64]
AFA Alloy 12	Bal.	32.06	18.69	3.10	0.13	6.96	0.15	3.32	0.05	0.05	0.1140	0.0017	0.15	0.14	Fail	Fail	Fail	[64]
AFA Alloy 13	Bal.	32.06	18.69	3.10	0.13	0.15	0.15	3.32	0.05	0.05	0.1110	0.0017	0.15	0.14	Pass	Pass	Pass	[64]
AFA Alloy 14	Bal.	32.08	18.72	3.08	0.13	0.15	0.15	3.27	0.05	0.05	0.0160	0.0018	0.15	0.14	Pass	Pass	Pass	[64]
AFA Alloy Base	Bal.	25.20	14.90	3.00	0.15	1.90	2.00	2.50	0.00	0.00	0.0900	0.0100	0.00	0.00	Pass	Pass	Pass	[8]
880-4	Bal.	24.40	9.70	4.80	0.40	0.15	0.00	0.00	0.00	0.00	0.0300	0.0005	0.00	0.00	Fail	Pass	Fail	[8]
1.5 Al Trip As	Bal.	0.00	0.00	1.50	0.06	1.55	0.00	0.00	0.00	0.00	0.1100	0.0000	0.00	0.00	Fail	Fail	Fail	[8]
HTUPS 2	Bal.	20.00	14.20	2.40	0.15	1.95	2.46	0.14	0.31	0.50	0.0760	0.0110	0.00	0.00	Fail	Fail	Fail	[6, 15]
HTUPS 3	Bal.	19.98	14.21	3.67	0.10	1.92	2.46	0.14	0.31	0.49	0.0790	0.0110	0.00	0.00	Fail	Pass	Fail	[6, 15]
HTUPS 4	Bal.	19.95	14.19	2.48	0.15	1.95	2.46	0.86	0.00	0.00	0.0750	0.0100	0.00	0.00	Fail	Pass	Pass	[6, 15]

Prediction of Stacking Fault Energy as a Function of Alloying Additions

Models:

Experimental Measurements

- (A. Dumay 2006)
- (Schramm 1975)
- (Xing Tian 2008)
- Many more

Theoretical Predictions

- (Cohen 1976)
- (Mullner 1998)
- (Jacques 2010)
- (Vitos 2011)
- (Q. Lu 2013)
- (K. Ishida 1976)
- Many more

Relevant to creep, strain deformation, annealing twins, formation of dislocations, stress corrosion cracking, phase transformation stability, and electron/vacancy density, but we want to optimize SFE to ensure formation of deformation twins

The problem : Unpredictability !

Machine Learning - Artificial Neural Networks for Classification

A basic neural network representation

Our Model										
Input Layer	<u>Hidden Layer</u>	Output Layer								
9 units representing wt.% of different elements	40 units to capture complex relationships between elements	3 units representing 3 different SFE regimes								
Training Set: 60 alloy compositions Accuracy : 97%										

Model training and testing

1	Low SFE (<20 mJ/m ²)
2	Medium SFE(20-50 mJ/m ²)
3	High SFE (>50 mJ/m ²)

- The data collected was broken into training and testing sets.
- The ANN has trained well as evident (~97% accuracy)
- The ANN has generalized well which is shown from good predictions on Test set.

Genetic Algorithm-based Optimization

- Computational Genetic Algorithms are a necessity to
 - Streamline Alloy Design Process
 - Decrease Time and Cost of Alloy Discovery
 - Decrease Time and Cost of Alloy Refinement
- GA will be used to find a heat treatment process for
 - Maximizing FCC Phase
 - Minimize BCC and Unwanted Phases
 - Ensure Twinnability through control of Stacking Fault Energy
 - Austenite Stability
 - Alumina Formation
 - Critical Stress for Creep

Proposed Genetic Algorithm Alloys

MATERIALS SCIENCE

RING NIVERSITY

Computational Alloy Design

Can the second generation alloy

- Form alumina?
- Undergo deformation twinning?

SCIENCE

MATERIALS SCIENCE & ENGINEERING TEXAS A&M UNIVERSITY

GC PGAA2: Oxidation at 850°C

Aluminum diffusion zone gets thicker with time

DOES PGAA2 SHOW DEFORMATION TWINNING? MATERIALS SCIENCE & ENGINEERING TEXAS A&M UNIVERSITY

• Stress-strain curve suggests deformation by twinning. TEM in progress...

ALS SCIENCE

- 1. Work on twinning:
 - Single crystals of three austenitic steels have been grown.
 - High volume fractions and hierarchical structure of deformation nano-twins were confirmed in single and polycrystals.
 - Nano-twins are thermally stable up to 900°C. Deformation annealing deformation route can increase the twin density and the strength levels
- 2. A new method has been developed to successfully predict the alumina formation in multicomponent alloys.
- 3. We have developed an extensive datasets for SFE of austenitic stainless steels
- 4. We have developed a classifier to predict in a robust manner whether any alloy would have low, medium or high SFE
- 5. A preliminary alloy design framework has been developed through the use of Genetic Algorithms.
- 6. Two generations of new alloys have been designed and characterized.
- 7. First generation of designed alloys suffers from lack of twinning, two phase formation, and AIN formation
- 8. Second generation of designed alloys look more promising for alumina formation
- ³⁰ and twinning, more work is needed.

ALLOY DESIGN

MATERIALS SCIENCE

Computational Alloy Design

- ICME---Integrated Computational Materials Engineering
- o Multi-objective optimization through Generic Algorithms

