Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

Nicole Ross*, Dr. Holly Shulman (PI), Shawn Allan **Ceralink Inc.**

Troy, New York

Dr. Ram Ranjan United Technologies Research Center East Hartford, CT

2015 NETL Cross-Cutting Research Conference Pittsburgh, April 27th 2015

DE-FE0024066

Outline

- I. Project Overview
- II. Material Selection
- III. Characterization
- IV. Prototype Fabrication
- v. Summary

Project Overview

Objective: design and build a prototype compact high-temperature ceramic heat exchanger as a key component for high efficiency advanced power generation systems

Strategy: Leveraging materials, modeling, and additive manufacturing technologies to solve fabrication and system integration challenges

Target:

- Operation > 1500 °F (816 °C)
- 25% microturbine thermal cycle efficiency improvement
- 60% weight to volume reduction compared to metal HEX
- Scalable fabrication for implementation

Project Overview: Tasks

Project management – Ceralink

Manage and direct project management plan Update PMP as necessary

HEX modeling & optimization – UTRC

Thermo-fluid Modeling Thermal Stress Model Development Design Optimization for Prototype Fabrication

Fabricate HEX prototypes – Ceralink

Materials Selection and Tape Fabrication Build Sub-Scale Prototypes via Additive Manufacturing Property and Performance Characterization Fabricate Full-Scale Prototypes via Additive Manufacturing

Investigate system level challenges – Ceralink

Sealing of Heat Exchangers for Testing Cost Projections

HEX performance validation – UTRC

Commission high temp test rig \rightarrow measure and validate performance of prototypes

Additive Manufacturing

*See Dr. Shulman's article Ceramic Industry Magazine Dec 2012

- LOM builds 3D parts from 2D ceramic tapes
- Precision cut with laser, tangential smoothing, precision stack
- Functional grading by changing tape composition

Naval Research Lab compact ceramic recuperator

Prototype Fabrication CAM-LEM Capabilities

Demonstrated capabilities

	Channel Wall Width (µm)	Height (µm)
1	500	1000
2	400	1700
3	800	1500
4	600	1600

ZTM test part

Materials Selection Considerations

- Materials properties
 - Thermal conductivity, strength, toughness, thermal expansion
- Attaching ceramics to metal
 - Thermal expansion mismatch
- Ease of fabrication
- Candidates:
 - Aluminum Nitride
 - Zirconia toughened mullite

Material Selection: Design Trade-Off Study

Optimized HX performance for various material options

	Inconel	Aluminum Nitride	$ZrO_{2}(+Y_{2}O_{3})$	Stainless Steel		
Thermal conductivity (W/mK)	12	180	2	40		
Density (kg/m ³)	8190	3260	5900	7480		
Weight (kg)	3.57	1.36	2.49	3.14		
Effectiveness	0.55	0.66*	0.42	0.62		
Heat transfer (kW)	32	39	24.5	36.5		
*initial program target						

Sizing optimization for fixed:

- Fin design
- Inlet conditions
- Pressure drop constraints

> Compatible with ZrO₂ firing, no side reactions

Prototype Fabrication Sub-Scale Prototype

- Laminated object manufacturing (LOM) \rightarrow accurate fine features
- Robust nature inspired honeycomb design:
 - Explore materials handling challenges
 - High connectivity between fins \rightarrow stability of individual layers
- Successfully fired to high density

Characterization: Macro Delamination

Delamination caused by binder burnout

Characterization: Micro Delamination

Solved by cleaning step

Particulate in delamination defects

➤No differentiation between layers

Prototype Fabrication Cleaning step

Cutting process

Cut part with debris

After cleaning

Design of Heat Exchanger Trade-Off Study: Geometry

- TC > 30 W/mK, marginal returns
- Effectiveness increases with dP
- Thinner fins, higher fin density
 - Higher dP
 - Higher effectiveness

- Narrower channels
 - Higher dP
 - Higher effectiveness
- > Thinner fins and smaller gaps give better effectiveness performance

Hot side pressure drop (psi)

2.5

2

.5

Thermal Stress Analysis

- > Thicker and shorter fins reduce thermal stress
- > Unfavorable for thermal and pressure drop performance

Prototype Fabrication Design & Manufacturing Process Evolution

Summary

- Feasibility of LOM for highly complex ceramic heat exchangers demonstrated
- Material characterization was used in concert with design development
- Causes of delamination were eliminated by:
 - Decreasing binder burnout rate
 - Use of tape cleaning step
- Distortion of fine features was prevented:
 - 1) Unsupported heat exchanger fins \rightarrow mitigated by design optimization
 - 2) Transport of cut tapes \rightarrow minimized by design and process improvements
 - 3) Friction of part during shrinkage \rightarrow solved by use of smooth firing surface

Acknowledgements

- National Energy Technology Laboratory
- Naval Research Laboratory
- NYSERDA NY State Energy R&D Authority
- Brian Matthewson, CAM-LEM

