

Combined Pressure and Temperature Contrast and Surface-enhanced Separation of Carbon-dioxide for Post-combustion Carbon Capture

DOE Project # DE0007531 Project Manager: Ms. Elaine Everitt

Zhen Wang¹, Mayank Gupta¹, Sumedh Warudka¹, George Hirasaki¹, Kennex Cox¹, Micheal Wong^{1,2,3}

¹Department of Chemical and Biomolecular Engineering;

² Department of Chemistry; ³Department of Civil and Environmental Engineering;

Rice University

NETL CO₂ Capture Technology Meeting

June 24th, 2015

1

Project Overview

- □ Project funding under DOE agreement DE-FE0007531
- Total project cost \$960,811 over three years. Federal share: \$768, 647 | Non-federal share: \$192,164

Budget Period			Budget Period 3		
Object Class Category	Budget Period 1 (10.01.11 – 09.30.12)	Budget Period 2 (10.01.12 – 12.31.13)	Revised (01.01.14 – 12.31.15)	Total	
Federal Share	\$243,621	\$327,568	\$197,458	\$768,647	
Non-Federal Share	\$89,473	\$51,348	\$51,343	\$192,164	
Total	\$333,094	\$378,916	\$248,801	\$960,811	

- Contract awarded executed October 2011
- Project duration: 10/2011 3/2015 (asked for non-cost extension to 12/2015, due to early technical difficulties, change in personnel last year and gap in funding between BP2 and BP3)

Objectives

- Develop a new CO₂ capture process that uses a single integrated unit that combines both the absorber and desorber columns
- Develop a rigorous model to simulate the CO₂ separation in integrated absorber and desorber unit, to test different configurations, and to optimize the operating condition and process
- Reduce energy requirement by lowering the desorption temperature with the addition of metal oxide catalysts
- Use waste heat for absorbent regeneration instead of lowpressure steam by operating the desorber section of the integrated unit under vacuum

Project Team

Project Director

Michael Wong Professor in Chemical & Biomolecular Engineering & Chemistry

Co-Project Investigator

George Hirasaki A J. Hartsook Professor in Chemical & Biomolecular Engineering

Co-Project Investigator Co-Project Investigator

Kenneth Cox Professor-in-practice in Chemical and Biomolecular Engineering

Edward Billups Professor in Chemistry

Postdoctoral Associate Postdoctoral Associate

Zhen Wang PhD, Thermal Power Engineering (ZJU, 2014)

Mayank Gupta PhD , Chemical Engineering (LSU, 2010)

Colin Shaw Undergraduate Chemical & Biomolecular Engineering

Past Members

Sumedh Warudkar Jerimiah Forsythe PhD (April 2013) PhD, Chemistry (LSU, 2011)

Technical Approach

Heat recovery

Major challenges:

Selective permeation of the rich solvent through the membrane into the desorber

□ How to facilitate the lateral flow of liquid in the unit

A comparison of the conventional amine system with the proposed 'combined' process

Technical Approach

Key point:

- □ Hydrophilic membrane (capillarity)
- Ceramic foam packing
- Pressure control in each side

Advantages:

- Reduction of space requirement and capital cost due to integration of absorber and desorber sections into a single unit
- Favorable characteristics for mass transfer because ceramic foam gas-liquid contactors have large geometric surface areas

Cost saving and less energy requirement due to catalytic low-temperature desorption:

- Metal oxide catalyzes the desorption of CO₂
- Moderate vacuum helps desorption to be carried out at reduced temperatures

Key milestones

Testing Equipment Facilities

1-D ceramic foam column for CO₂ separation

- Hydrodynamic study: flooding and pressure measurement
- To study the heat and mass transfer characteristics of the ceramic foam
- CO₂ absorption performance in ceramic foam column

Lab-scale combined absorber/desorber CO₂

- Demonstrate the feasibility of the concept of a performing CO₂ absorption and stripping in a single integrated unit
- Parametric and optimization studies

Bubble reactor for catalysts screening tests

 Solid metal oxide catalysts screening test

Hydrodynamic and mass transfer studies: 1D ceramic foam column

Material Properties

Advantages of ceramic foam:

- 1) Low bulk density and pressure drop
- 2) Very high geometric surface area and macro-porosity (80%-90%)
- 3) Regulated pore-size and ease of reproducibility of structure
- 4) Low pressure drop
- 5) High structural uniformity

Packing Type	Structure	Porosity (%)	S (m²/m³)	Bulk density (g/cm³)	Equivalent Pore diameter (mm)	Permeability (m²)
α-Al ₂ O ₃ Ceramic Foam	20-PPI ^a	85	700 ^b	0.60 ^d	1.28	8.0x10 ⁻⁹
	30-PPI	85	900 ^b	0.65 ^d	1.00	7.3x10 ⁻⁹
	45-PPI	84	1400 ^b	0.71 ^d	0.60	6.2x10 ⁻⁹
Random Packing ^c	Raschig Ring	62.6	239	0.58 ^e	1.50	3.87x10 ⁻⁸
	Pall Ring	94.2	232	0.48 ^e	2.50	3.53x10 ⁻⁷

(a) PPI: Number of pores per linear inch length; (b) C.P.Stemmet, IChemE, 2006 (c) Jerzy Maćkowiak, IChemE, 2011 (d) www.ask-chemicals.com

(e) <u>http://www.tower-packing.com</u> (f) permeability of packing was calculated by $k = \frac{3\phi d_e^2}{50}$

Pressure drop and flooding: ceramic foams

Measured and predicted pressure drop of different type ceramic foams Packing Height: 30.5 cm; Liquid phase: water @25 °C Gas Phase: air; Liquid flow rate 50 mL/min Comparison of floodings for different packings in generalized pressure drop correlation (GPDC) chart.

1-D model:

Simulation of CO₂ separation in ceramic foam column

Representation of simulated CO₂ concentration, CO₂ loading and temperature distribution along column

ceramic foam height: 25.4 cm; ceramic foam type: 20 PPI; gas flow velocity: 0.01 m/s; liquid flow velocity: 0.01 cm/s; liquid phase: 30% DGA solvent; gas phase: 13% CO₂/87% N₂; absorption temperature: 40 °C; lean loading: 0.2 mol CO₂/mol DGA 12

Experimental and Simulated CO₂ Removal Ratio (ceramic foam column= 10.2 cm & 20.4 cm)

Experimental vs Modelling

Liquid phase: 30% DGA, Gas phase: 13% CO₂/87% N₂; Temperature: 25 °C

Stainless steel prototype of Integrated CO₂ Absorber and Desorber Unit

Combined Absorber and Stripper System: Degree of CO₂ Removal

▲ Δp = 6.9 kPa Δp = 13.8 kPa
Δp = 20.7 kPa

Degree of CO₂ removal at variable gas flow-rates and absorbent flow-rate of 0.01 liters per minute (LPM), (DGA solvent)

Combined Absorber and Stripper System: Lateral Flow of Absorbent

2-D model for combined abs/des system: Process optimization and parametric study

The main process operating parameters include:

Gas flow rate to Liquid flow rate ratio (G/L)

G/L ratio of 200 was recommended to be operated due to minimal regeneration heat consumption.

□The CO₂ lean solvent loading (mol CO₂/mol MEA)

The solvent CO_2 lean loading of 0.27 mol CO_2 /mol MEA was recommended.

□Stripper operating temperature

The lowest regeneration heat consumption is found as stripping temperature was 100 °C₁

2-D model for combined abs/des system: Configuration optimization and parametric study

Simulated CO₂ loading profile with stripper chamber size

Simulated CO₂ loading profile with abs/des overlapping height

The main geometric parameters include:

□Stripper chamber size

0.8 x size of absorber

□Absorber and desorber overlapping height

Optimum absorber/stripper overlapping height is expected to be around half length of the absorber with lowest regeneration heat consumption and over 90% CO₂ removal efficiency

Membrane section thickness

Optimal membrane section thickness is around 10 cm.

Techno-economic analysis (TEA) results

Scale-up "combined" system to commercial scale by 2D modeling

- Absorbent: 30 wt% MEA, lean loading 0.27 mol/mol
- Desorption temperature 100 °C
- All at 90% capture ratio
- CO₂ compression to 150 bar

Our Approach: Using Metal Oxides during Desorption

COMBINED PRESSURE, TEMPERATURE CONTRAST, AND SURFACE-ENHANCED SEPARATION OF CO₂

Experimental Setup

Absorption at 40±2°C

Desorption at 90±7°C

- 15 mL of an amine solution (3M MEA) pre-loaded
- To each solution, 1.5 g of MO_x powder added, 15 min equilibration
- N₂ bubbling through solution at 800 mL min⁻¹, temperature from 40 °C to 86 °C at 10 °C min⁻¹

Solid Materials Tested

Material	IEP	Surface Area (m²/g)	Surface Density (M- atoms/nm ²)	γ-Al ₂ O ₃ supported catalyst
WO ₃	0.3	1.2		
V ₂ O ₅	1-2	4.5		
MoO ₃	2.5	0.9		
MgO	12-13	115.8		
WO ₃ (7.5 wt%) /γ-Al ₂ O ₃		49.3	6.0	Yes
V ₂ O ₅ (1.3 wt%)/γ-Al ₂ O ₃		137.9	7.7	Yes
MoO ₃ (4.2 wt%)/γ-Al ₂ O ₃		80.0	7.1	Yes

Screening of Metal Oxides for CO₂ Desorption (MEA)

CO₂ catalytic desorption results

- All desorption at 85 °C, except V₂O₅/γ-Al₂O₃ desorption at 91 °C
- Metal oxide only catalysts enhance CO₂ release up to 70%;
- Catalytic activities of metal oxide will be partially lost if supported by Al₂O₃, but still have up to 40% CO₂ desorption increment.

Summary and Conclusions

\Box Combined absorber/desorber CO₂ separation process

- Hydrodynamic and mass transfer studies on 1D ceramic foam column
- Demonstrate the feasibility of CO₂ capture in lab-scale "combined" unit
- Successful development of 1D and 2D model to simulate CO₂ capture in "combined" system
- Performed a sensitivity analysis and process optimization

Techno-economic analysis of combined absorber and desorber system

10% COE reduction compared with DOE case 10

□ Catalytic desorption of CO₂ using metal oxides

- Metal oxides represent a new approach to enhance CO₂ desorption and reduce the desorption temperature
- Al₂O₃ supported catalysts are also available to catalyze CO₂ desorption

Acknowledgements

Personnel

- •Ms. Elaine Everitt, DOE NETL
- •Dr. Joe Powell, Chief Scientist at Shell Oil Company
- •Dr. TS Ramakrishnan, Scientific Advisor at Schlumberger-Doll Research Center
- •Hirasaki Group & Wong Group members at Rice University

Additional Funding Support

- •Energy and Environmental Systems Institute (EESI) at Rice University
- •Rice Consortium on Processes in Porous Media
- Schlumberger

