BENCH-SCALE PROCESS FOR LOW-COST CARBON DIOXIDE (CO₂) CAPTURE USING A PHASE-CHANGING ABSORBENT

DE-FE0013687

Tiffany Westendorf

GE Global Research

2015 NETL CO₂ Capture Technology Meeting June 24, 2015

BENCH-SCALE PROCESS FOR CO₂ CAPTURE USING A PHASE-CHANGING ABSORBENT

36 Month, \$3.0MM Program to Develop a Phase-Change Process for CO₂ Capture

Program Objective: Design and optimize a new process for a novel silicone CO₂ capture solvent and establish scalability and potential for commercialization of post-combustion capture of CO2 from coal-fired power plants. A primary outcome will be a system capable of 90% capture efficiency with less than \$40/tonne CO2 capture cost.

lass Flov Gas Exhaust Gas Mass Flow Controller Stripped Flue Gas Analysis æ Flue Gas LeanLiquid GAP-0 Lean Liquid GAP-0 Spray Absorbe Cyclone Back Pressure Regulator Solids Feeder Mass Flow Mass Flow Meter Low Pressure Liquid High-Pressure Desorber Ćhiller Throttling Leon Liquid Lean Liquid Low-Pressure Desorber

Technical Approach

- Design and construct bench-scale unit and obtain parametric data to determine key scale-up parameters
- Perform an EH & S and technical and economic assessment to determine feasibility of commercial scale operation
- Develop scale-up strateay

\$2.4M DOE share 1/1/2014 - 12/31/2016

Program Deliverables Strategy for future scale-up Technical and economic feasibility determined

Environmental assessment

Anticipated Benefits of the Proposed Technology

- 90% CO₂ capture
- \$40/tonne CO2 capture cost

Program Team

Bench-Scale Design

EH & S Assessment

Techno-Economic

coperion

Assessment

 Extruder Design Component Integration

Gelest

Heat Management

WilliSiVance Solvent Manufacturers Aminosilicone Supply

SILAR

Construction/operation

of Continuous System

GE Global Research

Niskayuna

DE-FE0013687 7/30/2014

Chemistry of GAP-0 reaction with CO₂

- Extensive screening of multiple solvents
- Absorbs CO₂ very rapidly in the 40-50°C range
- High CO₂ loading (>17% weight gain, >95% of theoretical value)
- Carbamate readily decarboxylates at higher temps
- Carbamate is solid \rightarrow new process configuration

GAP-0 Properties

- Lower vapor pressure vs. MEA
- Higher heat of reaction vs. MEA
- Lower heat capacity vs. MEA
- >11% Dynamic CO₂ capacity @ 6 bara

4 DE-FE0013687 7/30/2014

Phase-Changing CO₂ Capture Process

Risk Assessment

7/30/2014

Project Structure

- Budget Period 1: Design and Build [2014]
 - Spray absorber, extruder, desorber
 - Preliminary Technical and Economic Assessment
 - <u>Go/No-go:</u> 90% CO₂ Capture, < 50/tonne CO₂
- Budget Period 2: Unit Operations Testing [2015]
 - Optimize individual unit operations separately
 - Solvent manufacturability study and EH&S risk assessment
 - Update Technical and Economic Assessment
 - <u>Go/No-go:</u> 90% CO₂ Capture, < 45/tonne CO₂
- Budget Period 3: Continuous System Operation [2016]
 - Integrate unit ops into continuous system, generate engineering data for scale-up
 - Final Technical and Economic Assessment
 - Goal: 90% CO₂ Capture, <\$40/tonne CO₂

Design and Build – Absorber

Gas supply system

Spray absorber and liquid supply system

8 DE-FE0013687 7/30/2014

Design and Build – Extruder

K-Tron solids feeder and 25mm extruder, connected to desorber inlet

9 DE-FE0013687 2/23/2015

Design and Build – Desorber

Pressurized and atmospheric pressure desorbers

10 DE-FE0013687 2/23/2015

Bench Scale Experiment Plan

	Absorber (2Q 2015)	Extruder (3Q 2015)	Desorber (4Q 2015)
Vary	 Gas inlet composition Gas flow rate Liquid flow rate CO₂: GAP-0 mole ratio Atomizer type and settings 	 Solids flow rate Screw RPM Screw design Barrel T profile Outlet pressure 	 Feed rate Temperature Pressure Agitation rate Residence time
Measure	 % CO₂ capture % GAP-0 conversion Gas outlet T Solids yield 	• Maximum delivery pressure	 % GAP-0 conversion CO₂ flow rate
Optimize	High % GAP-0 conversion (high quality solids)	High delivery pressure (stable solids seal)	 High CO₂ desorbed at pressure Complete solvent regeneration for recycle

Absorber experiments to date

Solids production: 16-100% CO₂, 50-200mL/min GAP-0, 100-200slm simulated flue gas

Solids can accumulate around the hopper outlet

Limited atomizer fouling in 20min sprays

Next: Continue with <16% CO₂, establish operating window that yields solids

GE Internal - For internal distribution only. © 2015 General Electric Company - All rights reserved

Preliminary Process and Cost Modeling

Phase-changing aminosilicone process offers substantially higher efficiency, lower cost vs. MEA

BP1 Milestones and Success Criteria

Budget Period	Task	Milestone Title/Description	Planned Completion Date	Actual Completion Date	Verification Method
1	1	Updated Project Management Plan	1/31/2014	1/31/2014	Project Management Plan file
1	1	Kickoff Meeting	12/31/2013	11/20/2013	Presentation file
1	2.1-2.2	Preliminary process and cost modeling complete	3/31/2015	3/31/2015	Preliminary Process and Cost Modeling Report
1	3.1	Absorber Built and Operational	12/31/2014	12/31/2014	Research Performance Progress Report file
1	3.2	Extruder Built and Operational	3/31/2015	3/31/2015	Research Performance Progress Report file
1	3.3	Desorber Built and Operational	12/31/2014	12/31/2014	Research Performance Progress Report file
1	3.4	Integrated system design complete	3/31/2015	3/31/2015	Bench-Scale System Design Topical report

BP1 Success Criteria

- \checkmark Unit operations are built and operational
- ✓ 90% CO₂ Capture, <\$50/tonne CO₂

BP2 Milestones and Success Criteria

Budget Period	Task	Milestone Title/Description	Planned Completion Date	Actual Completion Date	Verification Method
2	4.2	Absorber Parameters Established	3/31/2016		Unit Operations Testing Topical report
2	4.2	Extruder Parameters Established	3/31/2016		Unit Operations Testing Topical report
2	4.2	Desorber Parameters Established	12/31/2015		Unit Operations Testing Topical report
2	4.5	Continuous System Assembled	3/31/2016		Research Performance Progress Report file
2	5.1	Technology EH&S Risk Assessment	3/31/2016		EH&S Risk Assessment Topical report
2	5.2	Preliminary cost study completed	3/31/2016		Preliminary Cost Study report

BP2 Success Criteria

- >90% GAP-0 conversion in absorber, reactor T < 90°C
- <5% solids lost from absorber solids collection</p>
- >90% of carbamate conversion dictated by isotherms at T, P in pressurized desorber
- >95% of carbamate conversion in atmospheric desorber (polisher)
- 90% CO₂ Capture, <\$45/tonne CO₂

Thank You

• NETL

• Lynn Brickett, David Lang

• GE GRC Project Team

• Mike Bowman, Joel Caraher, Wei Chen, Rachel Farnum, Mark Giammattei, Terri Grocela-Rocha, Robert Perry, Surinder Singh, Norberto Silvi, Irina Spiry, Paul Wilson, Benjamin Wood

Coperion

• Paul Andersen, Eberhard Dieterich

Acknowledgement. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000084 and DOE- NETL under Award Number DE-NT0005310.

Disclaimer. The information, data, or work presented herein was funded in part by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

