

Pilot Testing of a Membrane System for Post-Combustion CO₂ Capture DE-FE0005795

Carlos Casillas, Ken Chan, Don Fulton, Jurgen Kaschemekat, Jay Kniep, Jennifer Ly, <u>Tim Merkel</u>, Vincent Nguyen, Zhen Sun, Xuezhen Wang, Xiaotong Wei, Steve White

> NETL CO₂ Capture Technology Meeting Tuesday, June 23, 2015

Project Overview

Award name: Pilot testing of a membrane system for post-combustion CO_2 capture **Project period:** 10/1/10 to 9/30/15

Funding: \$15 million DOE; \$3.75 million MTR

DOE program manager: Jose Figueroa

Participants: MTR, Babcock & Wilcox, SCS/NCCC, EPRI, Vectren, ISTC

Project scope: Demonstrate a membrane process to capture 20 tons of CO_2/day (TPD) from a flue gas slipstream of a coal-fired power plant.

Project plan: The key project work organized by budget period is as follows:

- **BP1** Membrane optimization though continued slipstream testing on the 1 TPD system and computational evaluation of sweep recycle with B&W
- BP2 Design and construction of the 20 ton/day system, boiler testing at B&W with CO₂-laden air; membrane/module optimization and durability testing through continued testing on 1 TPD system
- BP3 Field test of the 20 ton/day system; comparative economic analysis; industrial 1 TPD field test; case study at 20 MW-scale

As of 5/31/15, project is 95% complete

MTR CO₂ Capture Process

Benefits of selective recycle:

- Increases CO₂ concentration going to the capture step, and
- Reduces the fractional CO₂ removal required by the capture step

MTR CO₂ Capture Development Timeline

Pros and Cons of a Membrane Post-Combustion Capture Process

Benefits:

- No hazardous chemical handling, emissions, or disposal issues
- Not affected by oxygen, SO_x or NO_x
- Water use lower than other technologies (recovers H₂O from flue gas)
- No steam use \rightarrow no modifications to existing boiler/turbines
- Near instantaneous response; high turndown possible
- Modular and compact; relatively simple installation/operation
- Particularly well-suited for partial capture (40-60%)

Challenges:

- Very low partial pressure driving force favors high permeance membranes
- Unknown impact of real flue gas on membrane-module lifetime
- Module pressure drop and flow distribution issues

Polaris Membrane Improvements

- During this project, 75% increase in commercial membrane CO₂ permeance; route to 3X increase
- In addition to lowering costs, these improvements are important to shrink the size of the capture system

MTR

1 gpu = 10^{-6} cm³(STP)/(cm² s cmHg)= 3.35×10^{-10} mol/(m² s Pa)

Systems Analysis: Importance of Membrane Improvements

- Study completed in BP1 to meet a project milestone; currently being updated by EPRI/WP
- All calculations for 90% CO₂ capture use Bituminous Baseline report methodology
- Higher permeance (lower cost) membranes are key to approaching DOE goals
- Results are consistent with DOE report "Current and Future Technologies for Power Generation with Post-Combustion Carbon Capture" (DOE/NETL-2012/1557)

1 TPD Testing at NCCC

- Field laboratory that allows lifetime evaluation (>10,000 hours cumulative), and validation testing of new membranes
- Many lessons learned (i.e., ammonium sulfate deposition) applied to scale up

- System is testing vacuum and air sweep membrane steps
- Sized to capture 1 ton CO₂/day using commercial sized module
- System started operation in spring 2012

Sample 1 TPD Results from NCCC

System allows more rapid materials optimization through real world testing

Scale up to 20 TPD Small Pilot

- 20 TPD skid (1 MW_e) was installed by NCCC and MTR personnel during summer 2014
- Currently in operation
- Test objective is validation of advanced modules (multi-tube and plate-and-frame) designed for low pressure drop and small footprint

Installation of 20 TPD Small Pilot at NCCC

1st floor of system arriving by truck

Crane lowering 2nd floor of system into place

20 TPD System at PC4

System Tests Scaled-Up Membrane Modules

Bundled spiral Bundled Polaris plate-and-frame sweep modules **Polaris spirals** (designed in DE-NT7553)

Advanced modules demonstrate lower cost and pressure drop

20 TPD System Shows Stable Performance

Figure data from current NCCC campaign (PO3: May to July 2015)

New Modules Demonstrate Improved Pressure Drop Performance

- Field data is consistent with lab results, and confirms much lower air sweep pressure drop in new modules
- At full scale, the difference in pressure drop amounts to savings of about 10 MW_e

Systems Analysis: Membranes are Particularly Effective at Partial Capture

- Membranes show a minimum in capture cost
 - To meet proposed EPA emission limits for coal (~40% capture), a simple system without recycle may be preferable

What Would a Large Membrane System Look Like?

Ashkelon desalination plant

- 40,000 spiral-wound RO membrane modules (Dow Filmtec[®])
- 1.5 million m² membrane area

Flue gas membrane vessels

- ~100 vessels required for 550 MWe plant with today's membranes
- Double permeance \rightarrow halve the vessels

Summary

- CO₂ capture membrane performance continues to improve, and has been validated on a 1 TPD slipstream system at NCCC (now ~10,000 hours total run time)
- 20 TPD small pilot operation at NCCC is nearly complete; Testing successfully demonstrated optimized modules (low ∆p, low cost)
- Systems analysis shows low-cost "sweet spot" for membranes at 40-60% capture; updated TEA underway

Acknowledgements

U.S. Department of Energy,

National Energy Technology Laboratory

- Jose Figueroa
- Mike Mosser
- Southern Company Services (NCCC)

U.S. Department of Energy National Carbon Capture Center

