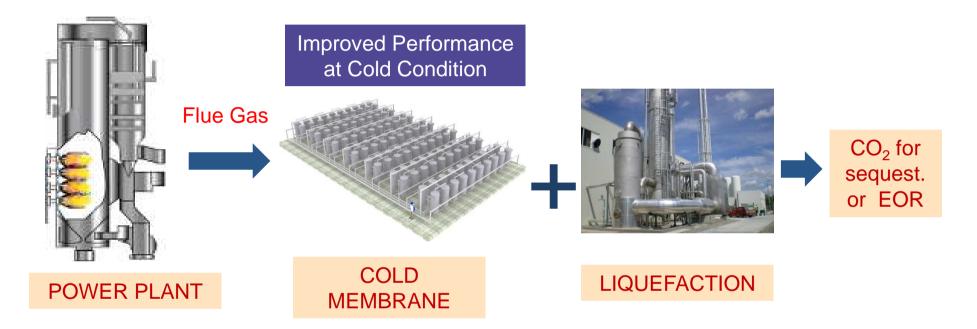
NETL CO₂ Capture Technology Meeting 2015

CO₂ Capture by Cold Membrane Operation with actual power plant flue gas (DE-FE0013163)


> June 23rd 2015 T. Chaubey, S. Kulkarni, A. Augustine, D. Hasse, J. Brumback, D. Kratzer, D. Calvetti, J. Ma| R&D

AIR LIQUIDE

Creative Oxygen

Project Summary

Air Liquide Hybrid Cold membrane - Liquefaction Process plant for 550 MWe scale

- Cold membrane testing at 0.1 MWe with synthetic flue gas (TRL4) in 2012
 - CO₂ Capture Cost estimated at 46-52\$/tonne (DOE Target \$40/tonne)
- Current project will test the cold membrane technology at 0.3 MWe scale (TRL5) at National Carbon Capture Center (NCCC)

Project Team

AIR LIQUIDE (R&D, MEDAL, E&C)

- Membrane experts Sudhir Kulkarni, David Hasse, Karl Beers (MEDAL), Jean-Marie Gauthier (MEDAL)
- Process experts Trapti Chaubey, Alex Augustine, Paul Terrien (E&C), Alfredo Velasco (MEDAL)
- Modeling expert Jiefu Ma
- Senior Technicians Jacob Brumback, Dean Kratzer, Judy Huss
- Engineering Services Dennis Calvetti, Robert Sokola, Hwanho Kim
- AL management Robert Gagliano, David Edwards, Ed Sanders

External Partner - PARSONS GOVERNMENT SERVICES

Brad Knutson

TEST SITE - NATIONAL CARBON CAPTURE CENTER

Tony Wu, Eric Fleming, Barton Pate, Max Phillips, Bob Lambrecht, Mike England

Agenda

AL Motivation & Roadmap

Hybrid Cold Membrane Technology

Project Overview

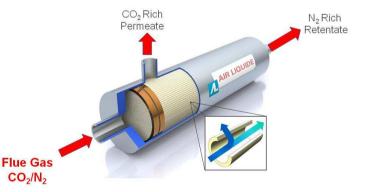
Project Progress

Project Risks

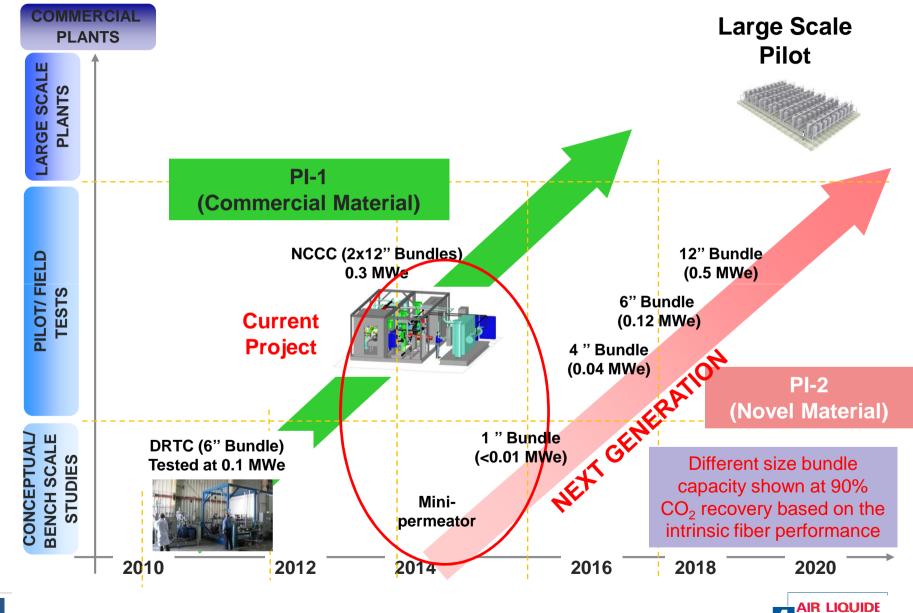
Next Steps

Air Liquide Motivation

- \square CO₂ as a Product 12 CO₂ plants in US
- CO₂ for EOR application Huge potential market

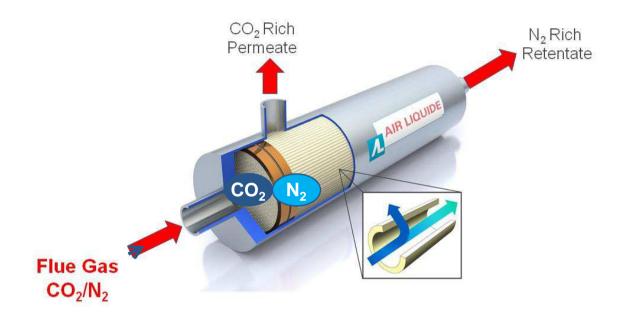

SOLUTION

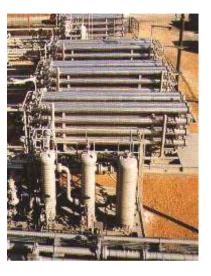
CO₂ Separation technologies such as cold membrane hybrid process, liquefaction plants, adsorption and absorption


PROBLEM

- CO₂ Generator 22.9 MMt of CO₂ emitted in 2014 worldwide
 - AL SMR plants, cogen plants, Electricity for ASU and other applications
- CO₂ emission equivalent to 7 Commercial power plants

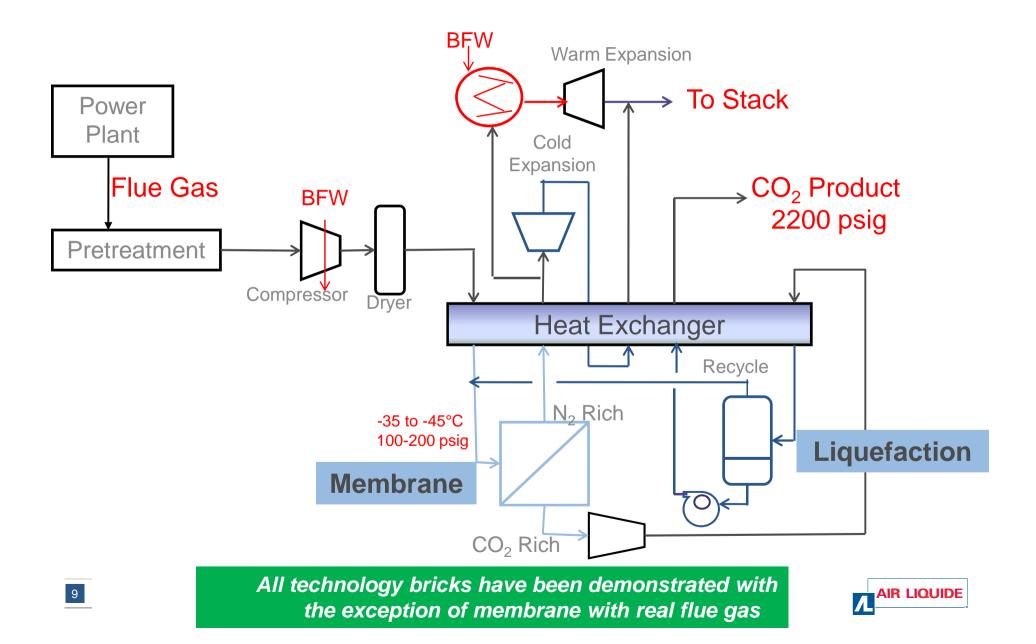
Air Liquide Roadmap for Post-Combustion Capture


AL Motivation & Roadmap


- Hybrid Cold Membrane Technology
- Project Overview
- Project Progress
- Project Risks

Cold Membrane Process Based on Hollow Fiber Membrane

- Key Parameters for high membrane performance
 - High surface area/vol, Good intrinsic property, very low thickness
 - High productivity/bundle is critical meeting the permeate purity spec



>5X Surface area/volume compared to spiral membranes.

Cost effective solution at large scale application

Hybrid Membrane + Liquefaction Configuration

Agenda

AL Motivation & Roadmap

Hybrid Cold Membrane Technology

Project Overview

Project Progress

Project Risks

Next Steps

Project Overview: DOE NETL Award No. DE-FE0013163

Total Budget : \$5.88MM, DOE Funding - \$4.7MM ; Cost share - \$1.17MM

	DOE Share	AL Cost Share
Budget Period 1 (Oct 2013 – June 2015)	\$3,369,528	\$842,382
Budget Period 2 (July 2015 – Dec 2016)	\$1,338,964	\$334,741

Period of Performance: 10/01/2013 through 12/31/2016 over 2 Budget Periods NETL Project Manager: José Figueroa Prime Recipient: American Air Liquide DRTC

Project Sub-awardees: MEDAL (Bundle Optimization support, Detailed engineering), E&C (Basic Engineering & TEA), Parsons (TEA Review)

E&C - \$489K, MEDAL - \$361K, Parsons - \$96K

Parsons Governmental Services Pasadena, CA and Philadelphia, PA Air Liquide Engineering Champigny, France

UIDE

43

MEDAL (Mémbrane Supplier) Newport, DE

> Delaware Research & Technology Center Newark, DE

Project Schedule & Status

Main Tasks	Start	End	Milestones/ Success Criteria	Status	
BUDGE	BUDGET PERIOD 1 (BP1) Oct 2013 to June 2015				
PI-1 Optimization & Testing	Oct 2013	March 2014	>30% improvement in bundle productivity	COMPLETED	
PI-2 Bundle Preparation & Testing	Oct 2013	June 2015	4-5X Projected Bundle Productivity compared to PI-1	COMPLETED	
Design and fabrication of 0.3 MWe field test unit	Oct 2013	June 2015	Fabrication, Installation, Acceptant Testing of FTU	COMPLETED	
BUDGET PERIOD 2 (BP2) July 2015 to December 2016					
Field Test at NCCC	July 2015	July 2016	500 hours of steady state testing	Target 2016	
TEA	July 2015	Dec 2016	\$40/tonne CO2 capture cost	Target 2016	
Preliminary design next phase	July 2015	July 2016	Preliminary design and costing of next phase	Target 2016	

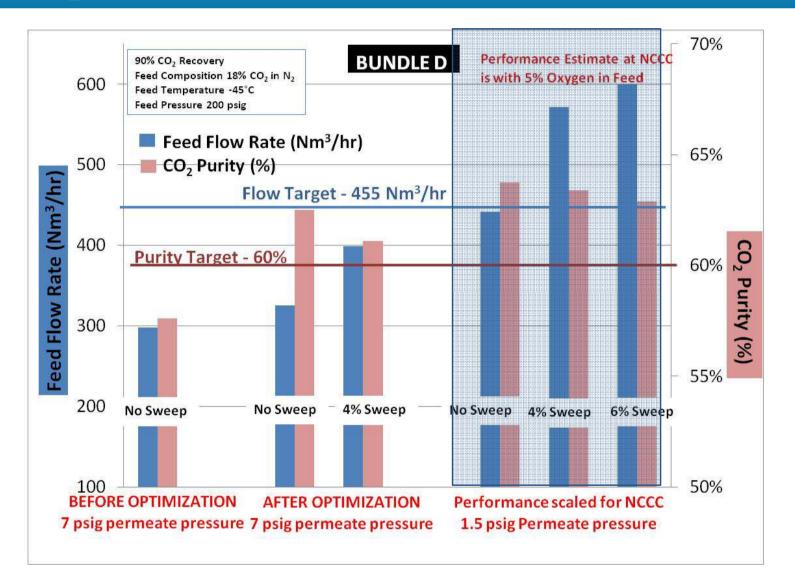
Agenda

AL Motivation & Roadmap

Hybrid Cold Membrane Technology

Project Overview

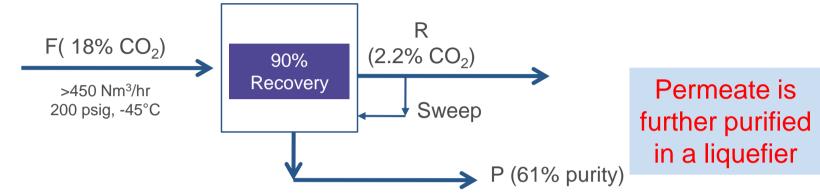
- Project Progress
- Project Risks



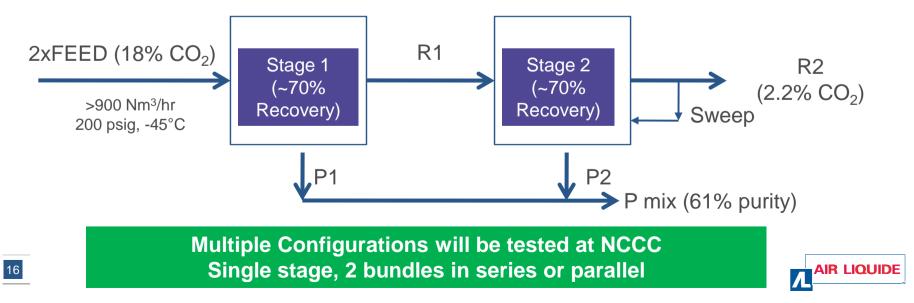
PI-1 Bundle Testing Summary

- PI-1 Commercial Bundles tested for >13,700 hours
 - Current Project Six 12 inch bundles ~6500 hours
 - 4 Bundles Qualified for field
 - Previous Project Two 6 inch bundles 7200 hours
- Completed Bundle Optimization and testing with synthetic flue gas
- Process simulation used due to current bench scale skid (0.1 MWe) limitations:
 - Feed flow rate 400 Nm3/hr
 - Permeate pressure 7-8 psig
- Process Performance is scaled to NCCC conditions
 - Feed flow capacity at NCCC~1000 Nm³/hr (0.3 MWe)
 - Lower permeate pressure at NCCC test conditions (Target 1.5 psig with single bundle)

90% CO₂ Capture Data & Performance scaled for NCCC

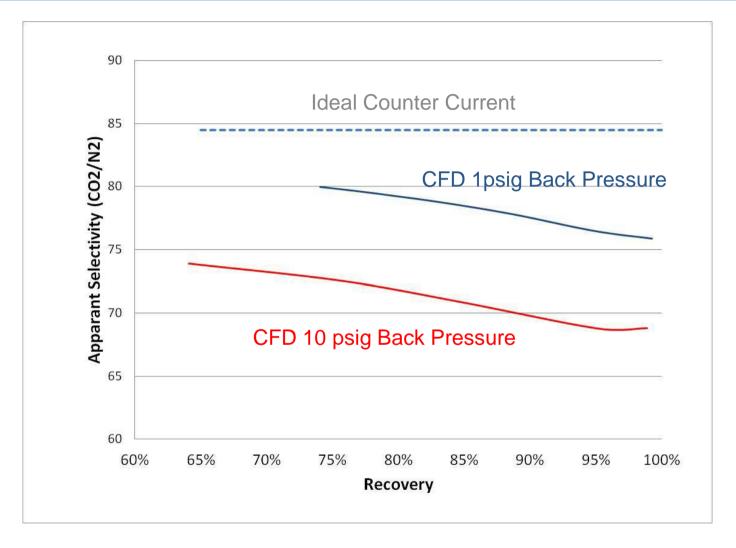


>30% Improvement in Bundle Productivity has been achieved with the combination of simulation and experiments


IR LIQUIDE

Membrane Bundle Configurations at NCCC

2 Stage Configuration in Series – Completed bench scale test (0.1 MWe) at different feed composition to validate the concept



2 Stage Configuration – CFD Analysis

- Both stages will operate at 65-70% CO₂ recovery for overall 90% recovery
- Total number of bundles will be reduced for the final solution

2 Stage Configuration – CFD Analysis

Bundle Non-ideality is dominant at high CO₂ recovery and accentuated at higher permeate pressure

PI-2 Membrane Development Summary

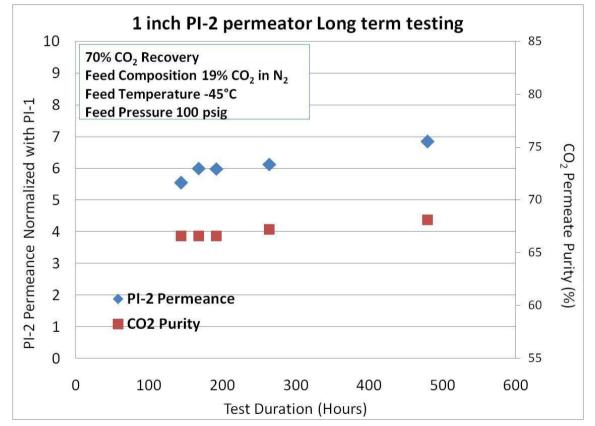
Laboratory trials to develop spinning techniques for PI-2 membranes

- \square CO₂ permeance is >5X compared to PI-1 material
- Increase in membrane separation performance at lower temperature consistent to PI-1

Scale-up in the current project

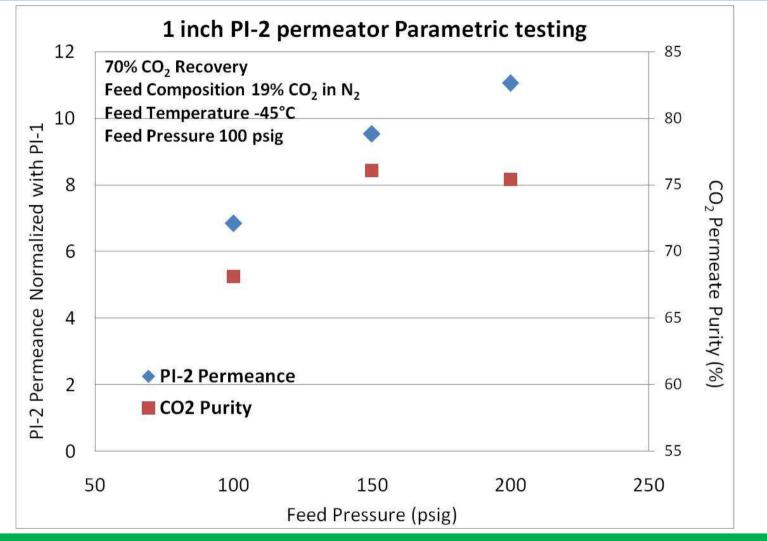
	Fiber Count Compared to Mini-Permeator	Synthetic Flue gas test	Real Flue Gas Test (NCCC)
Mini-Permeator	1X	Test Completed	-
1 inch Permeator	25X – 45X	Test in progress (3 Permeators qualified for NCCC)	BP2 (Campaign 1)
1 inch Bundle	250X – 350X	BP2	BP2 (Campaign 2)

Challenges with PI-2


- Polymer qualification
- Fabrication scale-up

1 inch PI-2 Permeator Testing

- MEDAL commercial 1 inch bundle design is used to prepare PI-2 permeators
- 1 inch permeator testing is in progress

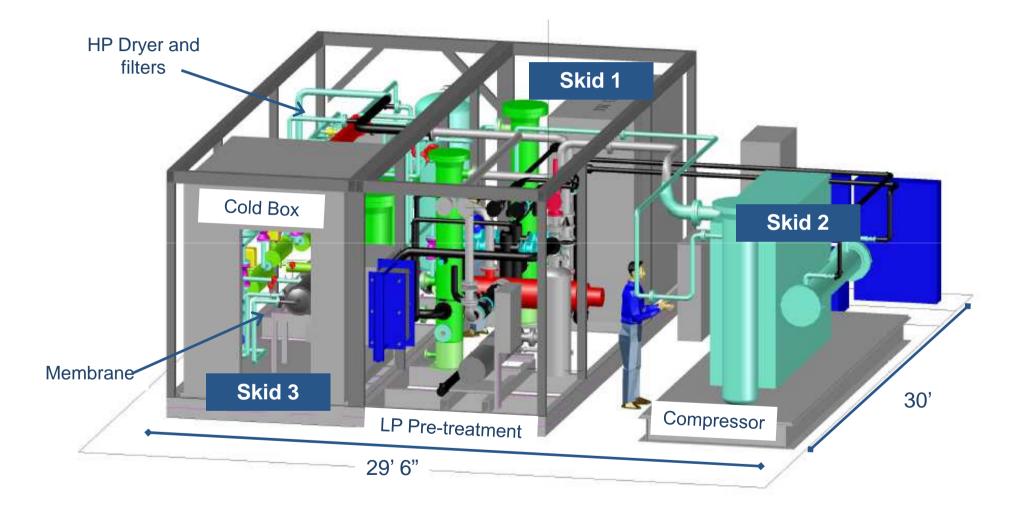

Long term testing is continuing for >500 hours

Performance is stable after >500 hours long term testing at cold temperature

PI-2 Permeator Parametric Testing

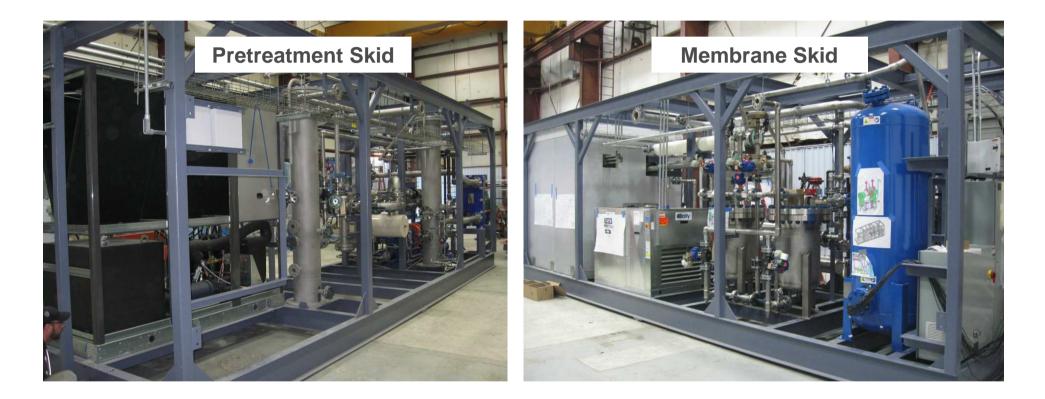
Fiber Performance target has been met. Projected 4-5X Bundle Productivity compared to PI-1

FIELD TEST UNIT



2015

World leader in gases, technologies and services for Industry and Health



0.3 MWe Field Testing at NCCC

0.3 MWe Field Test Unit Design and Construction

Process equipment installation and acceptance testing is complete

0.3 MWe Field Test Unit Design and Construction

Compressor Skid is ready and stored at NCCC

Agenda

AL Motivation & Roadmap

- Hybrid Cold Membrane Technology
- Project Overview
- Project Progress
- Project Risks

Project Risks

Project Risks	Mitigation Strategy
PI-1 Risks Lower performance of 12 inch bundle compared to 6 inch 	PI-1 Mitigation StrategyBundle Optimization
Bench scale skid limitation	 Process simulation used. Validation by field testing
 Optimized bundle testing limited due to time 	 Selective testing & CFD modeling
PI-2 Risks • Bundle manufacturing and viability for test at low temperature is unknown	 PI-2 Mitigation Strategy Laboratory Testing at low temperature
Polymer Qualification for membraneScale-up	Close Collaboration with supplierDifferent phases of development

Project Risks

Project Risks	Mitigation Strategy
 Field Test Risks Particulates can foul the compressor or blind the hollow fiber membrane Compressor corrosion due to acid contaminants Acid contaminants in the presence of moisture may lead to long term hydrolysis of 	 Field Test Mitigation Strategy Dust filtration to remove the particulates Water knock-out and desaturation before compressor Dryer upstream of membrane
 membrane Design related safety issues Uncertainty in field 	 Detailed HAZOP review Extensive acceptance testing, AL experience and close collaboration with NCCC

Agenda

AL Motivation & Roadmap

- Hybrid Cold Membrane Technology
- Project Overview
- Project Progress
- Project Risks

Next Steps

Next Steps - Budget Period 2 (July 2015 – Dec 2016)

0.3 MWe Field testing at NCCC (October 2015 – July 2016)

PI-2 bundle fabrication

TEA and EH&S analysis for CO₂ capture using cold membrane technology

Comparison between different membrane configurations

PI-1 versus PI-2 membrane material

Preliminary design of next phase

Acknowledgements & Disclaimer

US DOE – José Figueroa, Lynn Brickett, Andrew O'Palko

Parsons Government Services and NCCC

Some material in this presentation is based on work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0004278 (completed) and DE-FE0013163. The National Carbon Capture Center is support by Award DE-FE0022596.

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

