the Energy to Lead

Pilot Test of a Nanoporous, Super-hydrophobic Membrane Contactor Process for Postcombustion CO₂ Capture

DOE Contract No. DE-FE0012829

S. James Zhou, Shiguang Li, Travis Pyrzynski, and Howard Meyer, *GTI* Yong Ding and Ben Bikson, *PoroGen* Katherine Searcy, *Trimeric*

> NETL CO₂ Capture Technology Meeting June 23-26, 2015

Introduction to GTI and PoroGen

gti.

- Not-for-profit research company, providing energy and natural gas solutions to the industry since 1940s
- Facilities
 - 18 acre campus near Chicago
 - 200,000 ft², 28 specialized labs

- Materials technology company commercially manufacturing products from high performance plastic PEEK (poly (ether ether ketone))
- Products ranging from membrane separation filters to heat transfer devices

Project overview

- **Performance period**: Oct. 1, 2013 June 30, 2018
- Total funding: \$12.5 MM (DOE: \$10MM, Cost share: \$2.5MM)

Objectives:

- Build a 0.5 MW_e pilot-scale CO₂ capture system and conduct tests on flue gas at the National Carbon Capture Center (NCCC)
- Demonstrate a continuous, steady-state operation for \geq 2 months
- Goal: Achieve DOE's goal of 90% CO₂ capture rate with 95% CO₂ purity at a cost of \$40/tonne of CO₂ captured by 2025

Team:	Member	Roles		
	ati	 Project management and planning 		
	yu.	 Process design and testing 		
	PoroGen	Membrane and module development		
	X TRIMERIC CORPORATION	Techno-Economic Analyses (TEA)		
-	NCCC	Site host		
PoroGen		3		

What is a membrane contactor?

High surface area membrane device that facilitates mass transfer

- <u>Separation mechanism</u>: CO₂ permeates through membrane and reacts with the solvent; N₂ does not react and has low solubility in solvent
- Why **PEEK HFMC**?

Polymer	Max service temperature (°C)			
Teflon™	250			20
PVDF	150			
Polysulfone	160	6.430 F		
PEEK	271	and the second sec		

HFMC= Hollow Fiber Membrane Contactor

Process description

NCCC's PC4

HFMC plant

Membrane contactor for flue gas CO₂ capture compared to conventional membrane process

Membrane technology	Need to create driving force?	CO_2/N_2 selectivity (α)	Can achieve >90% CO ₂ removal and high CO ₂ purity in one stage?
Conventional membrane process	Yes. Feed compression or permeate vacuum/sweep gas required	Determined by the dense "skin layer"	No. Limited by pressure ratio, multi-step process required*
Membrane contactor	No. Liquid side partial pressure of CO ₂ close to zero	Determined by the solvent, $\alpha > 1000$	Yes

* DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update, May 2011

Technical and economic <u>challenges</u> of applying membrane contactor to existing PC plants

Performance

- Maximize overall mass transfer coefficient to reduce absorption system size
- Durability Long-term membrane life in contact with solvent
 - Improve membrane hydrophobicity
- Contactor <u>scale-up</u> and <u>cost reduction</u>
 - Make larger diameter module, module packaging to reduce cost

Timeline and scope

Preliminary Techno-Economic Analysis completed in September 2014

- Preliminary TEA was based on bench scale field test results at Midwest Generation's (IL) coal fired power station
 - Flue gas feed

Feed element	Concentration	
CO ₂	7.4-9.6 vol%	
NO _x	40-60 ppmv	
SO ₂	0.4-0.6 ppmv	
СО	100-600 ppmv	
O ₂	8.5-11 vol%	
Balance: N ₂ , water vapor, trace elements		

 Mass transfer coefficient of 1.2 (sec)⁻¹ achieved with aMDEA solvent at 93.2% CO₂ removal

aMDEA = Activated **m**ethyl**die**thanol**a**mine

Preliminary TEA shows HFMC technology with aMDEA solvent can cost 25% less than DOE Case 12

Mass transfer coefficient target of the current pilot program: **1.7** sec⁻¹

ltem	Unit	DOE Case 12	Bench scale field test data	Target mass transfer coefficient achieved
LCOE - No TS&M	mills/kWh	137.3	127.1	122.1
Increase in LCOE - No TS&M	%	69.6%	57.0%	50.9%
Cost of CO ₂ Capture - No TS&M	\$/tonne	56.47	47.53	42.48

LCOE = Levelized Cost Of Electricity

TS&M = Transportation, Storage and Monitoring

PEEK membranes continue to improve, larger inner diameter fibers with high CO₂ permeance developed

New larger ID fibers have intrinsic CO₂ permeance as high as 2,600 GPU, surpassing our <u>target</u> of 2,000 GPU

- Achieved in January 2015 with testing conditions:
 - 2-inch diameter modules
 - Pure CO₂ gas
 - ~3 psig feed pressure
 - Room temperature (22 °C)

Cartridge No.	Number of fibers	Active fiber area (cm²)	Pure CO ₂ permeance (GPU)
2PG-664	448	3,161	2,580
2PG-665	448	3,161	2,500

Why larger inner diameter (ID) fibers?

- During bench-scale field test, pressure drop (△P) between flue gas Inlet and outlet was 5 psi
- Current pilot program target: decrease ∆P to ≤ 2 psi because the lower the ∆P the more saving on operating costs
- The Hagen–Poiseuille equation: ΔP very sensitive to ID

$$\Delta P = \frac{8Q\eta L}{\pi \cdot r^4}$$

- Q: volumetric flow rate, η: absolute viscosity of the fluid, L: length of the hollow fiber, and <u>r: radius of the hollow fiber</u>
- Fiber ID is being increased from 13 mil to 20 mil

The 2,500 GPU 20-mil-ID-fiber module showed high CO₂ capture performance in contactor mode

Predicted $\triangle P$ for 8-inch module: 0.74 psi

Material compatibility confirmed/resolved before module scale-up

- No problems with O-ring seals were noted through tests of multiple 2-inch diameter modules
- Resolve tubesheet adhesion issues

 No wet out of hydrophobic membrane surface after long-term operation based on single-gas CO₂ permeation measurements before and after contactor testing

Membrane module scaled to 8-inch diameter

8-inch module constructed

Measured intrinsic CO₂ permeance for the 8-inch module: 2,300 GPU

New regeneration process developed from process modeling during TEA study, validated by lab testing

- One stage of high pressure flash combined with one stage of low pressure flash
- Power required for compression can be reduced by as much as 20%

Pilot plant design

Design bases:

- Bench scale PFD, P&ID and testing results
- Process modeling
 - Mass and energy balances
 - Equipment sizing
 - Process conditions

Preliminary design completed, HAZOP reviewed at NCCC in February 2015

Major HAZOP review outcome

- No "show-stopper" or "major" modifications were identified

Revised design package sent to bidders, one will be selected to construct the plant

Plans for future testing/development/commercialization

After this project

June 2018

Development	CO ₂ capture, Ton/day
0.5 MWe pilot scale (in progress)	10
10 - 25 MWe demonstration	200 - 500
	Development 0.5 MWe pilot scale (in progress) 10 - 25 MWe demonstration

Summary

PEEK HFMC: promising based on bench-scale field tests

- \geq 90% CO₂ removal in one stage
- Mass transfer coefficient of 1.2 (sec)⁻¹, which is over one order of magnitude greater than conventional contactors
- Pilot-scale development in progress
 - TEA: projected costs 25% lower than benchmark technology
 - PEEK membranes continue to improve, new developed larger ID fibers showed high CO₂ permeance and low pressure drop
 - Module scaled to 8-inch diameter with CO₂ permeance of 2,300 GPU
 - New regeneration process designed and validated experimentally
 - Design and costing near completion

Acknowledgements

Financial support

- DOE NETL José Figueroa
- ICCI Dr. Debalina Dasgupta

