ADA(U) Advancing Cleaner Energy

Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture

June 25, 2015 ADA-ES, Inc. DE-FE0004343

© 2015 ADA-ES, Inc. All Rights Reserved

\$18 M

\$6.3 M

Project Funding and Goals

The overall objective of this funding stage is to validate solid sorbent-based post combustion CO₂ capture through slipstream pilot testing.

Project Goals:

- Achieve 90% CO₂ Capture
- Reduce costs of carbon capture *Progress towards <35% LCOE Goal*
- Generate a high purity CO₂ stream
- Successfully scale sorbents
 DOE Funds Industry Cost Share

Cooperative Agreement (Award No. DEFE0004343) American Recovery and Reinvestment Act of 2009 Administered by DOE-NETL: Project Manager Bruce Lani

Project Overview

Project Team

- DOE NETL • Project Sponsor
- ADA-ES, Inc.

- Project Management
- Developed Process Concept
- Sorbent Eval & Selection
- Process Validation Testing
- Techno-Economic Assessment
- Primary Cost Share
- Technip Stone and Webster **Process Technology**
 - Detailed Engineering Services Significant Experience with Fluidized Bed Reactor Design

- Stantec Consulting, Ltd.
 - Cost Analysis, Plant Integration

Owners Engineer Perspective

- McAbee Construction
 - Pilot fab and installation
- EPRI

- Technical Advisor
- Cost Share
- Independent Performance **Evaluation and Techno-**Economic Assessme
- Southern Company

- Host Site, Cost Share
- Luminant • Cost Share

Post-Combustion CO₂ Capture

Sorbent Isotherms

Process Conceptual Design

ADAsorb™ CO₂ Capture Process

Advantages

- Heat transfer Isothermal operation
- Mass transfer favorable
- Proven at the industrial scale
- Approaches countercurrent gas/solids contacting
- Process Flexibility Can be applied to cycling plant "load following"

Challenges

- Pressure drop
- Solids circulation
- Sorbent attrition
- Water adsorption
- Heat recovery

Project Status

BP1

BP2

BP3

- 500 MW concept completed
- Design of 1 MW pilot completed
 - Detailed engineering of pilot complete
- Sorbent has been manufactured
- Fabrication of pilot is complete
- Installation of pilot is complete
- Commissioning of pilot has begun
- 1 MW Testing is nearly complete
- Develop 500 MW Preliminary Design
- Conduct Techno-economic analysis

BP 3: Pilot Testing

- Host Site: Southern Company Plant
 - PRB Coal
 - WFGD
- Pilot Designed for
 - 90% CO₂ Capture
 - ~2,300 lb CO₂/hr
 - Flue Gas Flow Rate
 ~ 2,600 SCFM
 - Operation above freezing

Pilot Schedule

<u>Task</u>	<u>Date</u>
Commissioning/Dry Startup	Aug- Sept '14
Field Testing Round 1	Oct- Nov '14
Field Testing Round 2	April - June '15

Advancing Cleaner Energy

© 2015 ADA-ES, Inc. All Rights Reserved

Key Observations from Pilot Testing

- 90% capture can be achieved at very low flows but cannot be achieved at high flow rates
 - Capacity limitations
 - Sorbent handling characteristics at full regeneration temperature
- Data suggests relatively fast adsorption kinetics
- Moisture uptake on the sorbent appears to be higher than predicted from laboratory testing
- It is possible to circulate sorbent in a stable and consistent fashion, but system is sensitive to sorbent particle density, temperature, and CO₂ loading

CO₂ Removal at Varying Adsorber Flow Rates

Adsorber Flow (acfm)

CO₂ Removal in Adsorber

CO₂ Removal at Varying Adsorber Flow Rates

Adsorber Flow (acfm)

- Product stream purity 80% to 90% CO₂ during prolonged periods of stable pilot operation
- High moisture in CO₂ product

Moisture Uptake

Pilot results indicate working capacity may be higher than predicted from TGA testing

Sorbent Density

Location At 248F	Design (lbs/cf)	Measured (lbs/cf)
Regenerator	26.0	16.6
Adsorber	15.0	18.9 - 19.9

Environmental Testing

- Liquid discharge samples all condensate locations all discharge points
 - Total suspended solids
 - HEM / "Oil and Grease"
 - Sorbent samples collected bi-weekly from both the regenerator and the adsorber
 - RCRA 8 Metals
- All testing performed has produced results below the recordable limit for the tests

Additional Testing

TGA results after approximately 3 weeks in the process indicated sorbent had <u>not</u> degraded in flue gas

Key Challenges from Testing

Balance of plant issues

- SO₂ scrubber operation and subsequent blower issues
- Electrical grounding issues
- Unseasonably cold weather and inadequate freeze protection
- Supply water contamination
- Analyzer Reliability

Managing sorbent flow

- Changes in sorbent behavior at high temperatures
- Insufficient fluidization
- Sorbent carryover

Significant reliance on manual operation

Retrospective on Bench Testing and Modeling

Additional bench-scale testing could improve design and performance expectations in pilot

- Hot sorbent flow characteristics
- Sorbent moisture uptake

Modeling from CCSI efforts have been improving throughout testing program. Confidence in models may allow performance estimates with improved sorbent characteristics

Summary

- 90% CO₂ capture can be achieved
- Moisture adsorption by sorbent will impact sorbent working capacity and overall performance
- Reducing the moisture adsorption of the sorbent and managing sorbent flow at higher temperatures could significantly improve process results

Next Steps

- Complete pilot testing and data analysis
- Techno-economic analysis
- Continue evaluating options for post-pilot scale-up
 - Will final regulations and oil prices support large-scale use of fossil-generated CO₂?
 - Today, regulatory drivers alone do not justify continued investment
- Work with DOE to make pilot facility available to other contractors

ADA(U) Advancing Cleaner Energy

Questions?

Sharon Sjostrom sharons@adaes.com

Jayson Denney Jayson.Denney@adaes.com

© 2015 ADA-ES, Inc. All Rights Reserved