

Mixed Matrix Membranes for Post-Combustion CO₂ Capture

Surendar Reddy Venna Research Engineer

CO₂ Capture Technology Meeting 23rd June, 2015

Project Objectives

Goal is to fabricate *thin*, CO_2 selective membrane with good mechanical, chemical & thermal stability while achieving the DOE goals of CO_2 capture with cost optimized process scheme

Integrated Research Approach

Multidisciplinary team helps to develop the best product.

Project status

- Budget period : 1 of 2 budget periods.
- 60% of \$1,509,046 total funds.
- Project is 62% complete.
- Current TRL: 3 End of Project TRL: 4

Milestone Number and Task	Milestone Title	Planned Completion Date	Actual Completion Date	Variance Comment
1	Complete testing of two down selected hollow fiber membranes in simulated pulverized coal power plant flue gas	9/30/2014	9/30/2014	None
2	Complete the construction of a membrane test skid for use with a slipstream of real flue gas.	9/30/2015		On Schedule
3	Complete the gas permeance testing of two membranes using a slipstream of real flue or fuel gas.	9/30/2016		On Schedule

Mixed Matrix Membranes - Advantages

Inorganic filler

Polymer

- Permeance of >1,000
 GPU.
- CO_2/N_2 selectivity of >30.

Polymer - filler interface is important

Control of nanoscale interfaces is very important to achieve improved performance

Tuning the interface structure

- Filler surface: Plane and brush
- Polymer chain flexibility: Rigid, intermediate and soft
- Interaction between polymer and MOF: Strong repulsion, weak repulsion, neutral, weak interaction and strong interaction

Interface optimization by MOF functionalization

Functionalities C10 amide, Phenyl acetyl amide, Succinimide

Example of bad adhesion

It is possible to optimize the interface by engineering the materials

Venna et. al., J. Mater. Chem. A, 2015,3, 5014-5022

Membrane performance - Targets

Moore, T.T and Koros, W.J., Journal of molecular structure, 2005, 739, 87

Polyphosphazene membranes

Polyphosphazene was chosen because of its high tunability, mechanical properties and gas transport properties

Over 700 Different Polyphosphazenes Have Been Synthesized So Far

Poly(bis(trifluoroethoxy)) phosphazene

Poly(cyclohexanol methoxyethoxyethoxy) phosphazene

	CO ₂ Permeability (Barrer)	N ₂ Permeability (Barrer)	CO ₂ /N ₂ selectivity
Poly(bis(trifluoroethoxy)) phosphazene	325	25	13
Poly(cyclohexanol-methoxyethoxy			
ethoxy) phosphazene	110	4.1	27

Polyphosphazene MMM

 UiO-66-NH2 with poor adgeomeration

 Image: Single state state

	CO ₂ Permeability (Barrer)	CO ₂ /N ₂ selectivity
Poly(bis(trifluoroethoxy))		
phosphazene	325	13
MMM -TFE PZ		
10 wt% of SIFSIX	354	16.1

Development of potential MOFs

N₂ Adsorption: Pore size: 5.9 Å Surface area: ~1800 m²/g Pore volume 0.9 cc/g

Ionic cross-linked polyethers (IXPE)

IXPE – mixed matrix membranes

Settling/agglomeration

Membrane	CO ₂ Permeability (Barrer)	N ₂ Permeability (Barrer)	CO ₂ /N ₂ Selectivity
Cerenol 650	86	2.1	40.9
10 wt% UiO-66-NH ₂			
in Cerenol 650	59.3	0.78	75

MMM using low cost fillers

Thin membranes: Challenges

- Coating a sufficiently thin, selective membrane with industrially viable fluxes.
- Fabricating the right hollow fiber support with ideal pore size and density.
- Particle size of MOF must be lower than 50 nm without any agglomeration
- The materials should show good mechanical properties as a thin membrane.

Development of hollow fiber membranes

Matrimid hollow fiber supports

MMM coating on the hollow fiber supports using dip coating

Pore structure optimization

Details	CO ₂ Permeance (GPU)	CO ₂ /N ₂ Selectivity
Pure polymer	55.3	12.9
PZ-SIFSIX MMM	94.1	15.4

Performance testing with simulated flue gas

Testing Conditions:

Gas composition - $\cancel{ACO}_{2\cancel{A}}$: $O_{2\cancel{A}}$: SO_2 : $NO_{2\cancel{A}}$: $N_2 = 14$: 4: 50PPM : 1PPM : BAL Humidity - 80%RHÁ

Membrane testing at NCCC

P&ID of the test skid is ready and construction is in progress. Will be ready for testing soon

Conclusions

Key challenges and Future Plans

- Continue development of materials to increase permeance
- Synthesizing the smaller MOF particles
- Technique to coat thin films on the hollow fiber supports
- Testing long term stability of the membranes under realistic conditions

Acknowledgements

Membrane Fabrication and testing

 Erik Albenze, Victor Kusuma, Shan Wickramanayake, David Hopkinson

Polymer Synthesis

• Zhicheng Tian, Harry Allcock, Xu Zhou, Hunaid Nulwala

MOF synthesis and functionalization

• Anne Marti, Alex Spore, Nathaniel Rosi

Molecular simulations

• Jie Feng

System Analysis

Olukayode Ajayi

