
Rapid-Temperature Swing Adsorption Using 

Polymeric/Supported Amine Hollow Fiber 
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Key Idea:

Combine:

(i) state-of-the-art supported amine

adsorbents, with

(ii) a new contactor tuned to

address specific weaknesses of 

amine materials,

to yield a novel process strategy
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Hollow fiber sorbents: a mass producible structured sorbent inspired by 

hollow fiber membrane spinning

Ideal temperature swing adsorption

1000 µm

RP Lively et al., Ind. Eng. Chem. Res., 2009, 48, 7314-7324

Bundle of 40 fibers in a 

1.5’ module at GT
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Hollow fiber sorbents: a mass producible structured sorbent inspired by 

hollow fiber membrane spinning

Ideal temperature swing adsorption

1000 µm

RP Lively et al., Ind. Eng. Chem. Res., 2009, 48, 7314-7324 5

Large CO2/CH4 module

76 cm OD x 1.8 m

Used on 700 MMSCFD offshore platform

Courtesy, E. S. Sanders NAMS 2003 

plenary



120°C

Rapid temperature swing adsorption (RTSA)

120°C
34°C

0.15 psi/ft Δp

3 min

Lively RP, et al., Int. J. Greenhouse Gas Control 2012, 10, 285

Plug of 

CO2
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Rapid temperature swing adsorption (RTSA)
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Post-spinning 

processing

• First successful spinning of polymer/silica/PEI hollow fiber sorbent

• Simple, scalable procedure—does not appreciably change current solvent

exchange procedure

• Proved the concept  with cellulose acetate (CA) - CA/silica/PEI

Creating the hollow fiber sorbents: Post-spinning amine infusion

New method for amine-containing fiber sorbent synthesis

Labreche et al., Chem. Eng. J., 2013, 221, 166-175.
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Two approaches:

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through 

fibers

- Disadvantage – fibers can become clogged by latex, requires careful 

handling of latex

Hollow Fiber Contactor as Heat Exchanger 

Constructing a barrier lumen layer in the fiber bore allows the 

fibers to act as an adsorbing shell-in-tube heat exchanger.

Torlon:

18

Labreche et al., J. Appl. Polym. Sci., 2015, 132, 4185.

(ii) Dual layer fiber spinning – spin the lumen layer when initial fiber formed

- Advantage – highly scalable synthesis when poly(amide-imide) 

like Torlon® employed

- Main fiber: porous Torlon® containing 50-60 wt% silica; 

Lumen layer: dense Torlon®; post-treatment with PDMS gives excellent 

barrier properties 

Water and gas 

permeance: < 3 

GPU



Two approaches:

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through 
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- Disadvantage – fibers can become clogged by latex, requires careful 

handling of latex
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Torlon:
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Labreche et al., J. Appl. Polym. Sci., 2015, 132, 4185.

Water and gas 

permeance: < 3 

GPU



Flue gas composition:  35 oC, 1 atm

~ 13% CO2, ~13% He (Inert tracer), 

6% H2O, balance gas N2

20
qb: breakthrough capacity

Lab-scale RTSA design and operation

36 inch 

Fiber module
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Reduced 8 oC by flowing CW 

Cooled Torlon-C803-PEI Fiber Sorbent Generation 3 Fibers

Lab scale heat capture efficiency during 
adsorption:  ~72%

qb remains ~ 1.1 mmol/g over 50 cycles 
Gen. 2 fibers

Gen. 3 fibers:
qb~1.4 mmol/g

qswing~0.85 mmol/g

Target qS ~1 mmol/g



• NO2, SO2 adsorb strongly, but have modest impact at low concentration

• Saturation capacity loss observed

• High concentration of gases (200 ppm) cause significant capacity loss, but a 

plateau was observed. Low concentration NO2 had no measurable impact on 

capacity for class 1 fibers.

• Deactivated fibers can be stripped of amine and recharged in the field for full 

capacity regeneration.
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Impact of SOx/NOx on Fiber Module Operation

Fan et al., AIChE J., 2014, 60, 3878-3887.
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Overall approach
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Fiber (GT)

Cycle Model Validation 

and Scale Up to Module 

Level (GT and Trimeric)

Integration with Plant 

Design and Escalation for 

TEA (Trimeric)

Water Looping for Heat Integration

DOE Metric Calculation. Feedback to 

single fiber design and optimization
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KEY TO FLOW LINE COLORS:

RED = Tempered Water System
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and other utility systems
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Notes:

1.Items not shown include:

- Water filtration of closed loop and cooling water 

- Details of compression train and CO2 

dehydration

- Details of reagent delivery for trim SO2 removal 

2. Configuration of inlet gas cooler and 

condensate removal is a function of targeted 

sorption temperature.
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Performance Evolution during Project and Future Directions
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Description Units
Year 2 Q4

(Sept 2013)

Year 3

(July 2014)

Year 3

(Jan 2015)

RTSA RTSA
RVTSA –

0.2 bar

Escalation Factor 1.67 1.53 1.40

Levelized Costs of Electricity and Steam

Levelized cost of electricity mills/kWh 178 154 126

Levelized cost of steam $/1,000 lb 16.2 14.0 11.5

Cost of CO2 Capture

Total Annual Cost of CO2 Capture MM$/year 277 302 237

Impact of CO2 Capture on Plant Efficiency

Net Plant Efficiency without CO2 Capture (HHV) % 39.3 39.3 39.3

Net Plant Efficiency with CO2 Capture (HHV) % 22.0 25.6 28.8

Change in Net Plant Efficiency % -17.3 -13.7 -10.5

Process 

configuration

RVTSA

adsorption 

heat recovery

RVTSA

CA polymer and 1 

𝛍𝐦 silica sorbent

RVTSA

New polymer and 4 

𝛍𝐦 silica sorbent

RVTSA

New polymer and 

500 𝐧𝐦 silica

Swing capacity 

[mmol/gfiber]
0.48 0.65 0.76 0.93

Number of modules 2002 1278 1096 894

Annual cost of CO2

capture [MM$/year]
182 201 181 159

CO2recovery [%] 75 90 90 90

CO2purity [%] 95 96 96 95

Escalation factor 1.35 1.35 1.33 1.31

Future directions:
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