

CO₂ Capture Project (CCP) – Phase 3 Results and Phase 4 Program Development

June 23rd, 2015

Raja Jadhav, Ph.D.

Chevron Energy Technology Company

Contents

Section One | CCP Background

Section Two | Phase 3 Results

Section Three | Phase 4 Program

Section Four | Summary and Conclusions

Over 15 years of support for CCS technology development

A collaboration among major oil & gas companies that covers capture, storage, economics and policy aspects of CCS.

CCP4: "Advancing CCS technology deployment and knowledge for the oil and gas industry"

Characteristics of CO₂ Emissions in the Oil & Gas Sector

Diverse Operations

- Refinery: FCC, heaters and boilers (H&Bs), cogens, SMR
- Heavy oil production: Once-through steam generators (OTSGs), cogens
- NGCC power generation
- LNG production: Gas turbine drivers
- Natural gas production

Dispersed CO₂ Sources

- Operations are scattered over a large area (e.g., heaters and boilers); flue gas cannot be combined
- Cannot take advantage of "economy of scale" due to relatively small CO₂ volumes in some streams
- Restrictions on the available plot space in congested refineries

Diverse CO₂ Gas Stream Characteristics

- CO₂ concentration in flue gas varies from 4–20 mol%. CO₂ in SMR H₂ plants available at high pressure (~20 bar)
- CO₂ emissions from a single source can vary from <100 tpd to >3,000 tpd
- Flue gas stream mostly clean with no particulates and SOx components

However, the fundamentals of CO_2 capture remain the same and knowledge gained in the power industry can still be applied

CCP3 Program (2009 – 2014)

CCP3 Program Objective: Move CCS towards commercial deployment by

- Increasing technical and cost knowledge
- Supporting the development of technologies to reduce CO₂ capture costs by 20-30%

Scenarios

- Refinery: FCC, heaters and boilers (H&Bs), SMR
- Heavy Oil: Once-through steam generators (OTSGs)
- NGCC

Approach

- Perform independent assessment of novel capture technologies
- Support lab, bench and pilot scale studies
- Carry out detailed economic assessment of select technologies

CCP3 Program – At a Glance

- 21 Technical Studies by Foster Wheeler
- 2 Demonstrations (oxy-fired FCC, oxy-fired OTSG)
- 4 bench/pilot projects (oxy-burner testing, Pd membrane, CLC, enzyme post-C)
- 1 pilot test post-C solvent screening program (EERC)
- 5 preliminary evaluations of novel technologies
- 24 in-house economic evaluations

Refinery FCC

Oxy-FCC demonstration project

- 33 bpd hydrocarbon feed unit (~1 tpd CO₂ emission)
- Host: Petrobras, Brazil

CCP4

participating organizations

- The field demonstration run confirmed the technical viability of the process.
- FCC in oxy-firing mode can enable a higher throughput (up to 3%) or allow a switch to processing heavier oil feeds while keeping the same product yield.
- Corrosion in the recycle compressor needs to be addressed.

Economic assessment studies

• **Refinery FCC**: Post-C has cost advantage over oxy-C; however, the possibility of additional feed throughput may make oxy-C favored over post-C.

•Image courtesy of Petrobras

Heavy Oil Production – Steam Generation

Oxy-OTSG demonstration project

- 50 MMBtu/h fuel input (~75 tpd CO₂ emission)
- Host: Cenovus Energy, Canada
- The field demonstration run confirmed the technical viability of the process.
- Similar temperature and flux profiles in air and oxy-firing
 Air-firing
 Oxy-firing

Image courtesy of Cenovus Energy Inc.

- Suncor Project Administrator, Project Manager
- Cenovus Energy Site Participant, Project Leader
- Praxair, Inc. Site Participant, Project Leader
- Other project partners and co-funders: CCEMC, CCP3, MEG Energy, Devon and Statoil

CCP3 Economic Results

			CO ₂ captured	CO ₂ captured	CO ₂ avoided	CO ₂ capture cost	CO ₂ avoided cost
			tonne/h	%	%	\$/tonne	\$/tonne
Refinery – USGC		Fuel					
FCC	Post-C	Carbon	55.5	85.5	65.5	85	110
FCC	Oxy-C	Carbon	64.8	100.0	83.5	99	118
Fired heaters	Post-C	Fuel gas	26.6	85.0	65.0	109	144
Fired heaters	Pre-C	Fuel gas	284.0	90.0	76.0	102	146
SMR	Post-C	Nat gas	58.4	85.5	65.5	86	111
Oil Sands Steam Generation – Fort McMurray, Canada							
OTSGs	Post-C	Nat gas	67.4	90.0	76.0	159	221
OTSGs	CLC	Nat gas	63.3	100.0	86.0	184	222
Gas-fired Power Generation – USGC							
NGCC	Post-C	Nat gas	126.1	85.5	73.7	77	90

- Basis: 1Q 2014 costs
- Post-combustion solvent-based technology is still the most economic (or close second).
- The economic assumptions, such as, fuel cost, location factor, imported power cost/CO₂ footprint, process scale/configuration all have an impact on the cost numbers.

CCP4 Program (2015–2018)

CCP4 Focus

- Tactical Demonstration (near-mid term) -> Incremental improvement technologies (e.g., SMR pre-combustion capture)
- Strategic Deployment (mid-long term) -> Breakthrough technologies (e.g., postcombustion capture)

CCP4 Projects Under Consideration (partial list)

TROBR

Scenario	Project/Study	Activities
Refinery	SMR pre-C capture technology development (mid-to-high TRL)	Perform economic assessment of a novel capture technology and support development
Various	Identify breakthrough technologies for post-C capture	Carry out techno-economic evaluations and support development
NG Treating	Understand/identify technologies for offshore CO ₂ removal	Perform technology landscape study followed by a technology development

SUNCOR

- Post-, pre- and oxy-combustion technologies were investigated at lab, bench, pilot and demo scale
- Post-combustion solvent-based technology is still the most economic (or close second)
 - Oxy-combustion not feasible or economically attractive (except for FCC)
- CO₂ avoidance costs are very high, especially for the Heavy Oil scenario due to the Alberta location
- Results from CCP3 are being used to develop the CCP4 program
 - Near to mid term focus on incremental improvement (e.g., SMR pre-C capture)
 - Mid to long term focus on breakthrough technologies (e.g., post-C capture)

Capture Research partners, collaborators, consultants and funders:

Alberta Climate Change and Emissions Management Corporation (CCEMC), Cenovus FCCL LTD., Chalmers Tekniska Hoegskola AB (Chalmers), Consejo Superior De Investigaciones Cientificas (CSIC), CO2 Solutions Inc., Devon Canada, Flemish Institute For Technological Research (VITO), Foster Wheeler Energy Ltd., Ion Engineering LLC., Johnson Matthey Public Limited Company (JM), John Zink Company LLC., Josef Bertsch Gesellschaft MBH & CO KG (Bertsch), MEG Energy, NTNU Faculty of Engineering Science and Technology Department of Energy and Process Engineering, Pall Corp., Petróleo Brasileiro S.A., Process Design Center B.V., Praxair Inc., Shell Global Solutions International B.V, Suncor Energy Services Inc., Statoil Canada Ltd., University of North Dakota Energy & Environmental Research Center (EERC), Vienna University of Technology (TUV), CCP3 consultants: Dave Butler and Michael Huffmaster

Capture Team Members

Jonathan Forsyth (BP), Mark Sankey (BP), Stuart Lodge (BP), Raja Jadhav (Chevron), Betty Pun (Chevron), Ana Musse (Petrobras), Dan Burt (Suncor), Iftikhar Huq (Suncor)

Questions/Discussion?

