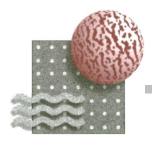

Robust and Energy Efficient Dual Stage Membrane Based Process for Enhanced CO₂ Recovery

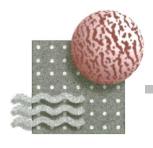
DE-FE0013064

Dr. Richard J. Ciora, Jr, Media and Process Technology Inc.


- •Dr. Paul KT Liu, Media and Process Technology Inc., Pittsburgh, PA
- •Professor Theo T. Tsotsis, University of Southern California, Los Angeles, CA
- •Dr. Eric C. Wagner, Technip Stone & Webster Process Technology, Inc., Morovia, CA

U.S. Department of Energy
National Energy Technology Laboratory
Strategic Center for Coal's
FY15 Carbon Capture Peer Review
March 16-20, 2015

M&P Dual Stage Membrane Process


Project Overview

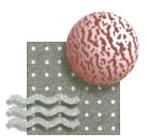
Overall Theme:

- Use inorganic membrane technology advantages to achieve CCS goals.
- Move inorganic membrane technology from lab scale novelty to commercial reality.

Overall Project Objectives:

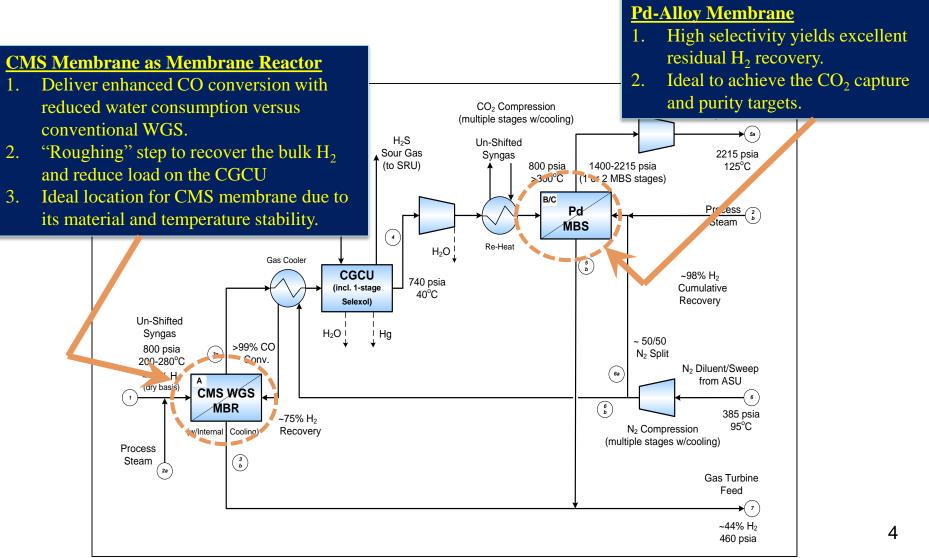
- 1. Demonstrate the carbon molecular sieve membrane as a bulk H_2 separator and to improve the efficiency of the WGS reactor
- 2. Demonstrate the Pd-alloy membrane for residual H_2 recovery from "captured" high pressure CO_2
- 3. Perform bench scale testing (equivalent to a syngas throughput for 0.01MWe power generator) of the innovative pre-combustion process scheme for power generation with CO_2 capture and sequestration (CCS).
- 4. Key process components will be tested under simulated and real gasifier syngas conditions for their potential to effectively separate H_2 and CO_2 .
- 5. Collected data will be utilized to assess the potential of the concept for achieving the DOE Carbon Capture Program goal.

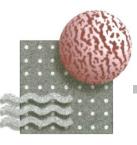
M&P Dual Stage Membrane Process


Project Overview

<u>Funding:</u> Overall project budget: \$2.5MM including \$500,000 (20%) cost share

Overall Project Performance Dates: October 1, 2013 - September 30, 2016


Project Participants:


- > Media and Process Technology...Membrane manufacturer/supplier and technology developer
- > University of Southern California...Membrane reactor testing and development
- > Technip Stone and Webster Process Technology Inc...Engineering and system design, analysis and economics

APPROACH

Proposed Process Scheme and Key Components

BACKGROUND

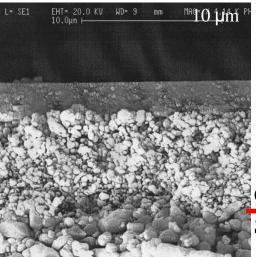
Multiple Tube Membrane Bundles - versatile, low cost

Single tubes

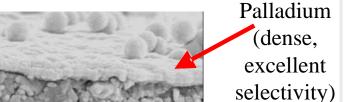
Close-packed

Example: conventional microand ultrafiltration

Ex: porous heat exchangers & catalytic membrane reactors


Ex: high pressure intermediate temperature gas separations

BACKGROUND


Specific thin film deposition for advanced separations

Ceramic Substrate

Ceramic

Substrate

5 µm

Important Features of MPT Inorganic Membranes

- Low cost commercial ceramic support
- High packing density, tube bundle
- Module/housing for high temperature and pressure use

Our Core Expertise/Technology Others, including zeolites, flourinated hydrocarbons, etc.

Carbon

molecular

sieve

(porous, sulfur

resistance)

BACKGROUND

Multiple Tube Bundles for Large Scale Applications

CMS Multiple Tube
Bundle with
Ceramic-Glass
Potting

Pd-Alloy Multiple
Tube Bundle with
Full Ceramic Tube
Sheet

ADVANTAGES

Process Advantages over SOTA

Our Innovation

- CMS membrane to enhance CO conversion efficiency with concomitant bulk H_2 recovery to improve power generation efficiency.
- *Pd-alloy membrane for residual H*₂ *recovery* during the post compression of CO₂ for CCUS to achieve the CO₂ capture goals and fuel efficiency requirements.

Unique Advantages

- *No syngas pretreatment required*. CMS membrane is stable in all of the gas contaminants associated with coal derived syngas.
- Improved CO conversion efficiency and bulk H_2 separation. Separation of hydrogen as well as enhanced CO conversion from the raw syngas occurs at elevated temperatures at reduced steam requirement for the WGS reaction.
- *Reduced Gas Load to CGCU*: The proposed use of the CMS membrane with the WGS reactor results in substantial hydrogen and steam recovery, resulting in reduced stream size for the CGCU.
- *CCS Post Compression Power Reduction*: CO₂-enriched gas is delivered to the CGCU at relatively high pressure reducing total compression load.
- Enhanced residual H_2 recovery from the CCS stream to achieve the CO_2 recovery goals. The Pd-alloy membrane is ideally suited to remove residual H_2 from the CCS stream to deliver the CO_2 purity and capture targets.

CHALLENGES

Process Advantages over SOTA (cont.)

Our Solutions to the Well-known Deficiencies of A Membrane Process

- **Bulk Separation Limitation**... Membranes are generally intended for bulk separation, usually not very efficient for fine separations. Our use of very high selectivity Pd-alloy membranes to supplement CMSM overcomes this deficiency to achieve the program goals.
- *High Cost of Pd Membranes*... Pd-based membranes are expensive and the worldwide supply is constrained considering commercially available technology. Our ceramic substrate and bundle designs permit thin films to overcome both of these problems.
- *Pd Membrane Stability*...The Pd-based membranes in this application is exposed to a H_2/CO_2 stream after CGCU. Thus, chemical stability of the membrane is not an issue.

Our Original (Proposal) Economic and Environmental Benefit Analysis

	Production	HHV	HHV Required Selling Price		∞_{2}	CO2 Capture
Case Descriptions	Bectricity	E fficiency	Bectricity	Bectricity	Capture	Cost
	MWh/Ton	%	mills/kWh	%Increase	%	\$/tonne
1a: Baseline for IGCCw/o CCS- 1-Stage Selexol™	2.66	39.0	76.3	-	0	-
2a: IGCCw/CCS-2-Stage Selexol™	2.23	32.6	105.5	38	90	42.46
3a: IGCCw/CCS-CMS& Pd Membranes & 1-Stage Selexol™	2.31	33.8	97.4	28	98	27.67

Progress to Date on Key Technical Challenges

BP1 Accomplishments

BP1 Tasks Completed to Overcome Key Technical Challenges

- CMS/Pd membrane operation meeting targets for CO₂ sequestration and cost. (*Milestone A, BP1*)
- Long term and other membrane performance stability (Milestone A, BP1)
- Full-scale WGS-MR and membrane separator designs for mega-scale applications (*Milestone D, BP1*)
- Updated membrane and membrane reactor modelling (Milestone B, BP1)

Item No.	Original Process Analysis	Performance Delivered Based Upon our BP1 Accomplishments	Program Goals	Critical Membrane Performance Requirements
1	CO Conversion (WGS-MR): 99%	97%	NA	H_2/CO_{min} CMS = 70
2	CO ₂ Capture: 98%	90%	90%	$H_2/CO_{2,min} CMS = 35$ $H_2/CO_{2,min} Pd = 300$
3	CO ₂ Purity: 95% (3% fuel; balance inert)	95% (3% fuel, balance inerts)	95%	$H_2/CO_{2,min} CMS = 35$ $H_2/CO_{2,min} Pd = 300$
4	Fuel Efficiency: H ₂ +CO to turbine: 98%	95 to 96%	NA	H_2/CO , _{min} CMS = 70
5	H ₂ S to Turbine: ~40 ppm	$\sim 200 \text{ppm}$ at $H_2/H_2S = 140$	NA	H_2/H_2S , CMS > 400
6	Reduction in Syngas to CGCU: 50%	~60% reduction	NA	H_2/CO_2 CMS = 35

Project Technical Approach

Overview of Project Technical Approach - Workplan

Budget Period 1

Budget Period 2

Task 1. Project Management and Planning

Task 2. Establish Performance Database: Focus here is to complete the membrane performance database under more severe operating conditions in the presence of simulated WGS contaminants at long times. Also reactivate the bench top WGS-MR system for Task 3 activities.

Task 3. CMS WGS-MR experimental verification and modeling under extreme conditions: Focus here is lab scale testing of the CMS WGS-MR at gasifier conditions and includes model development/verification.

<u>Task 4. Preparation of CMS and Pd for bench testing at NCCC:</u> Focus here is design and fabrication of the pilot scale (86-tube bundles) for process evaluation at the NCCC.

<u>Task 6. NCCC Field Testing:</u> Focus here is testing at the NCCC of the two stage process for demonstration and operational stability.

Task 7. Process Design and Engineering: Focus here is comprehensive process development and economic evaluation.

Task 8. Conduct Economic and Environmental Analysis: Focus here is assessment of the environmental impact.

Task 5. Preparation of Pd Module for 2^{nd} Stage H_2 Recovery for bench scale test at NCCC: Focus here is design and fabrication of the pilot scale Pd module.

Progress and Current Status of Project

Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 - 1678

PROGRESS: CMS Membranes

Typical Performance and Performance Targets

CMS Single Tube Characterization

CMS Membrane Characteristic	Preliminary Target to Achieve DOE Goals ¹	Laboratory Single Tubes Performance	
Permeance, H ₂ [GPU] @ 250°C, 20 psig	550	420 to 1,100	
Selectivity, H ₂ /X			
H_2/N_2	70	80 to 110	
H ₂ /CO	70	80 to 110	
H_2/CO_2	35	35 to 50	
H_2/H_2S	N/A ²	$100 \text{ to } 150^2$	
H_2/H_2O	1.5	1.5 to 3	

Notes:

- 1. Target performance is that required to achieve $90\% \text{ CO}_2$ capture at 95% purity with 95% fuel utilization (H₂ + CO to the turbine).
- 2. At this selectivity, approximately 200 ppm H₂S in the fuel to turbine.

CMS 86-Tube Bundle Characterization

CMS Bundle ID	He Permeance [GPU]	He/N ₂ Selectivity [-]
86-6	731	100
86-7	1,020	187
86-8	658	91
86-9	950	102
86-10	365	200
86-11	584	142
86-12	548	77
86-13	840	126
86-14	1,020	117
86-J1	973	120
86-MB1	421	122
86-MB2	665	87
86-MB3	438	85

PROGRESS: Pd-Alloy Membranes

Typical Performance and Performance Targets from Economic Analysis

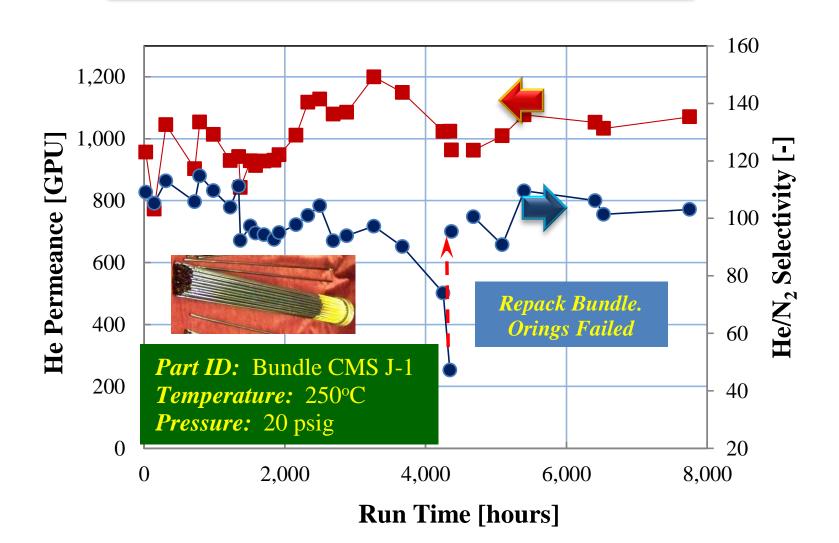
Pd-Alloy Single Tube Characterization Overview

Pd-Alloy Membrane Characteristic	Preliminary Target to Achieve DOE Goals ¹	Laboratory Single Tubes Performance		
Permeance, H ₂ [GPU] @ 250°C, 20 psig	3,470	1,750 to >5,500		
Selectivity, H ₂ /X				
H_2/N_2	300	300 to >3,000		
H ₂ /CO	300	300 to >3,000		
H ₂ /CO ₂	300	300 to >3,000		
H_2/H_2S	N/A ²	NA ²		
H_2/H_2O	300	300 to >3,000		

Detailed Pd-Alloy Performance Data 10,000 Pd(40 to 50%)-Cu Pd(20 to 30%)-Ag Pd (100%) 8,000 H₂ Permeance [GPU] H2/CO2 > 1,000- H2/CO2 > 300 6,000 4,000 2,000 **Operating Conditions** Temperature: 350°C Feed Pressure: 20 psig Permeate Pressure: 0 psig 0.01 0.1 10 1000 100 CO₂ permeance [GPU] $H_2/CO_2 = 1,000$ $H_2/CO_2 = 300$

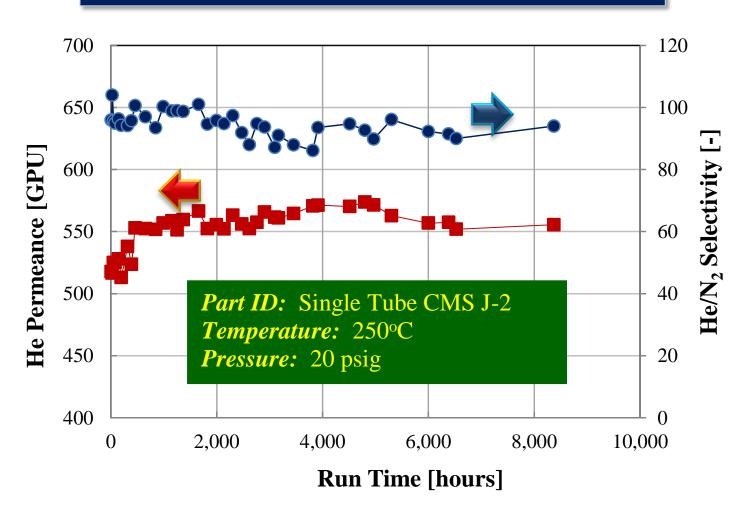
Notes:

- 1. Target performance is that required to achieve 90% CO_2 capture at 95% purity with 95% fuel utilization ($H_2 + CO$ to the turbine).
- 2. Feed gas to the Pd-alloy membrane has been pretreated to remove residual sulfur species in the CGCU.

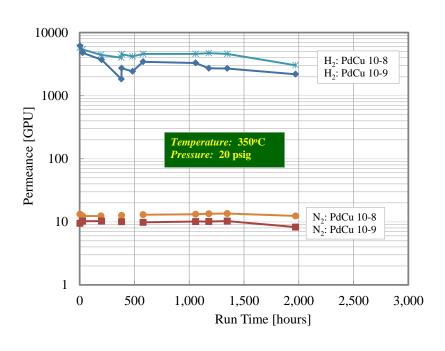

Pd-Alloy Comments

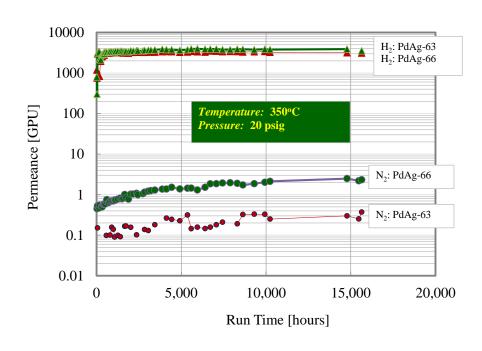
- 1. Pd-Cu offers thermal cycling stability and low temperature operational capability (>200°C).
- 2. Pd-Ag offers higher flux and selectivity but higher minimum operating temperature (>300°C)

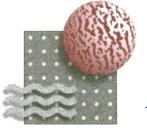
Key Technical Hurdles Focused on Long Term Stability (CMS Membrane)


CMS 86-Tube Bundle Long Term Stability (8,000 hrs)

Key Technical Hurdles Focused on Long Term Stability (CMS Membrane)

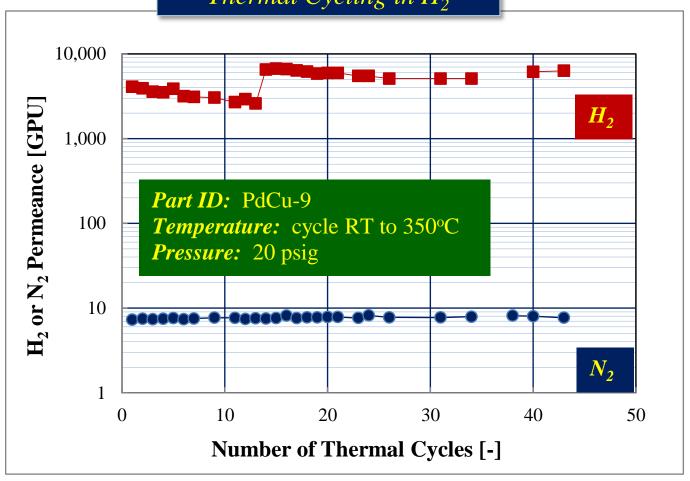

CMS Single Tube Long Term Stability (8,000 hrs)





Key Technical Hurdles Focused on Long Term Stability (Pd-alloy)

Pd-Alloy Pd-Cu (60/40) Long Term Stability Pd-Alloy Pd-Ag (80/20) Long Term Stability



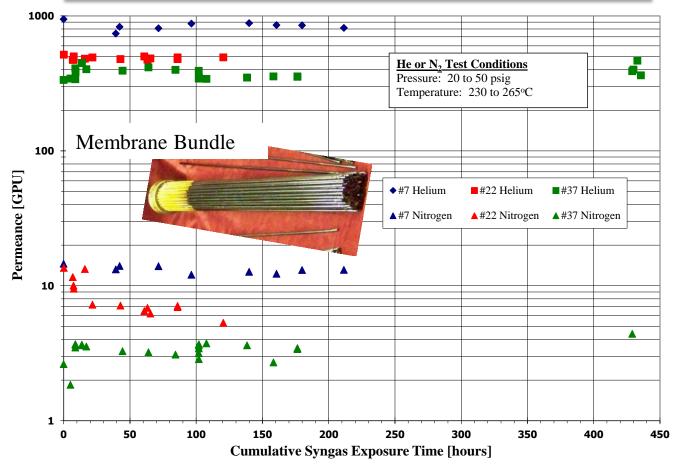
Key Technical Hurdle: Thermal Cycle Stability in H_2 (Pd-alloy)

Pd-Alloy Pd-Cu (60/40) Thermal Cycling in H₂

NCCC Testing: CMS Membranes Highly Stable in Coal Gasifier Syngas

Testing Parameters

<u>Membrane</u> 86-tube CMS


Operating Conditions
T~ 250 to 300°C
P~ 200 to 300 psig

<u>Pretreatment</u>
Particulate trap only,
no other gas cleanup.

 $\frac{Composition}{H_2 \sim 10 \text{ to } 30\%}$ $CO \sim 10\%$ $CO_2 \sim 10\%$ $N_2, H_2O \sim Balance$

Trace Contaminants $NH_3 \sim 1,000ppm$ Sulfur Species \sim 1,000ppm HCl, HCN, Naphthalenes/Tars, etc.

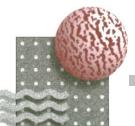
NCCC Slip Stream Testing: No gasifier off-gas pretreatment

Performance stability of multiple tube CMS membrane bundles during H_2 recovery from NCCC slip stream testing. He and N_2 Permeances measured periodically during >400 hr test.

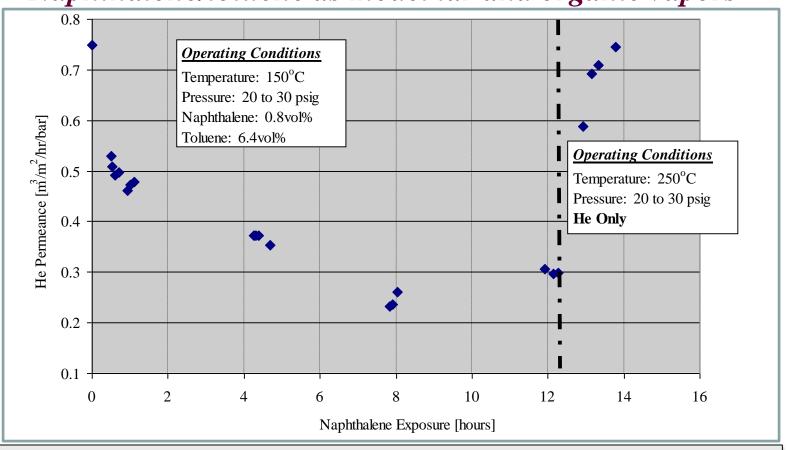
CMS Performance Stability: Tar-like Species in Gasifier Off-gas

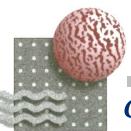
Operating Temperatures Above 250°C Required to Prevent Condensation of Tar-like Contaminants

Temperatures ≤230°C


Tar or other residue

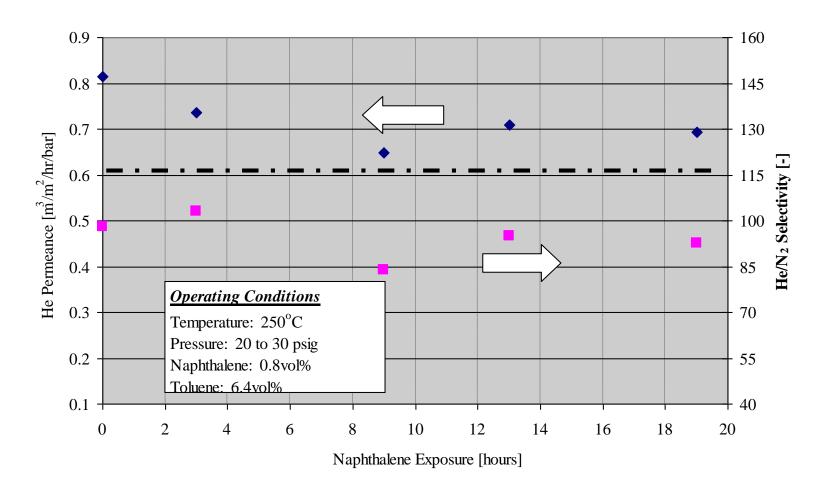
buildup evident


Temperatures >250°C
No evidence of tar or
other residue buildup



Effect of Temperature in the Presence of Model Tar Compounds

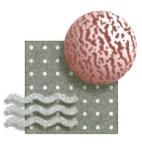
Naphthalene/toluene as model tar and organic vapors



- **☐** Membrane fouling occurs at low temperature.
- **☐** Membrane regeneration can be achieved rapidly at high temperature.

CMS Membrane Stability in the Presence of Model Tar Compound

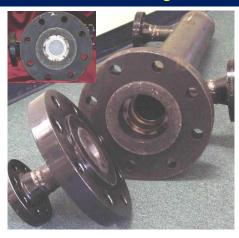
Membrane performance is stable at high operating temperatures (250°C) in the presence of naphthalene/toluene as model tar and organic vapors compounds.


PROGRESS: High Pressure Stability

Multiple Tube Bundle Potting Design: Pressure Stability

Ceramic/Glass Potting vs. Ceramic Tube Sheet **Pd Bundle w/ Dense Ceramic Tube Sheet** "Dense" Membrane Tube Leak Rate at Potting N_2 Permeance vs. T and PPotted Ceramic/Glass (PCG) **Dense Ceramic Tube Sheet (DCT)** 10000 1.0000 H, Permeance Region (~1,750 to 5,550 GPU) N₂ Permeance (with dense tubes) [GPU] 1000 Bundle ID: DCT 12-31 Description: N₂ Permeance [GPU] 0.1000 12-tube Pd-Ag Bundle PCG 150C Candle Filter Configuration 100 \bullet RT + o-ring PCG 250C DCT 150C ■RT Graphite DCT 250C 0.0100 ■150C Graphite 10 ▲ 250C Graphite ◆350C Graphite 0.0010 0.1 0.0001 600 1,000 100 200 300 400 1,200 200 400 800

Pressure [psig]


Pressure [psig]

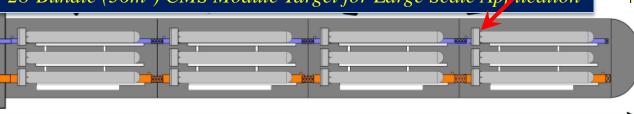
Preparation for Field Test

Full Scale Module Design Concepts

Single CMS Bundle Housing Used in NCCC testing.

Multiple CMS Bundle Housing A prototype 3-bundle housing wa

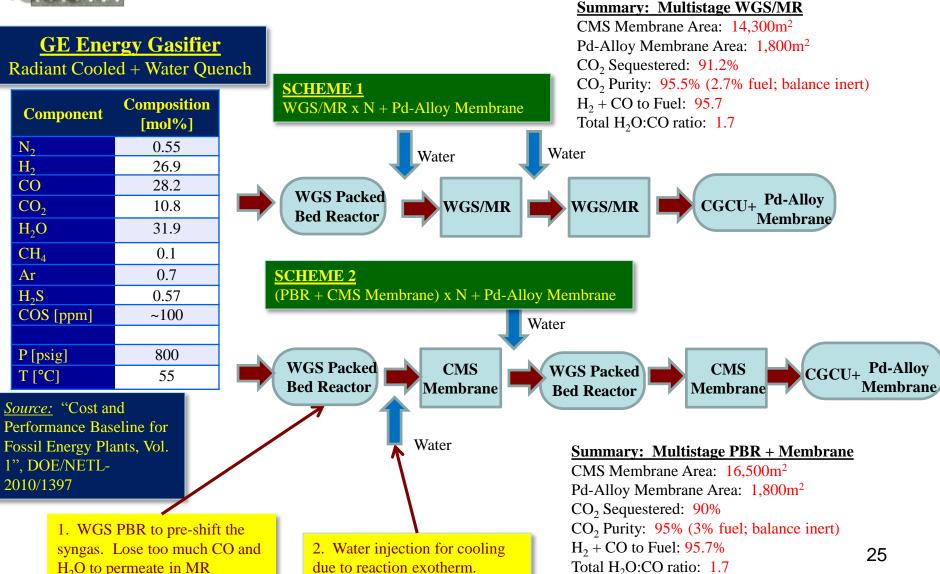
A prototype 3-bundle housing was fabricated to demonstrate technical feasibility


~16,000 m² CMS membrane requirement for 500 MW via IGCC with CCS.

According to our estimate,

- MPT has designed and
 constructed a 3-bundle module uniquely suitable for high temperature and pressure.
- About 350 of the 56 m² modules are needed for 500 MW application.
- Our design offers a viable avenue to overcome the barrier of the number of module requirement for mega applications, such as power generation.

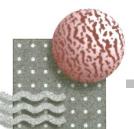
Our design could reduce the CMSM sale price to $\leq \$750/m^2$.



PROGRESS: Simulation Results


Process Simulation

PLANS for Remaining Technical Issues


- Near Term (next 6 months):
- > WGS-MR Kinetics, Stability, and Modeling at High Pressure
- > Sensitivity analysis on the H₂ permeance and selectivities and impact on overall DOE targets
- > Optimize the CMS membrane performance based upon the sensitivity analysis.
- Intermediate Term (next 12 months):
- Continue Bench Scale Field Testing at the NCCC
- ► High pressure (up to 800 psig) mixed gas H_2/CO_2 performance testing with Pdalloy membranes
- > Engineering design and analysis of the overall process scheme
- > Economic and pollution prevention/CO₂ capture analysis

Summary and Conclusions

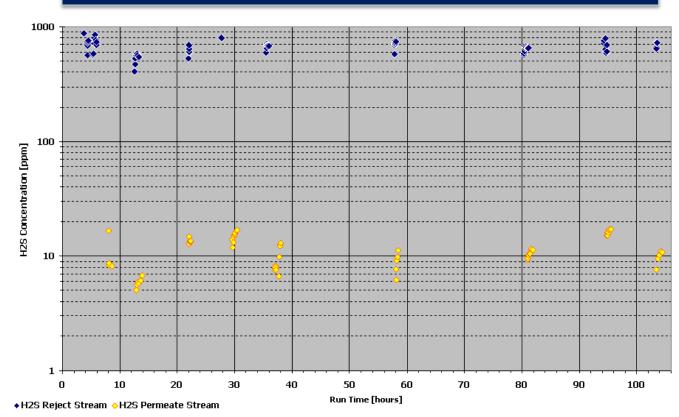
Key Findings to Date

- Database updates show that the capabilities of our CMS and Pd-alloy membranes meet or exceed the performance targets required to deliver the DOE CCS goals.
- The CMS (250°C) and Pd-alloy (350°C) membrane tubes and bundles (full ceramic) have been demonstrated to be stable in thousands of hours of thermal stability testing.
- The CMS membrane has been shown to be stable in various tests for hundreds of hours of exposure to synthetic and actual coal gasifier syngas with only particulate pretreatment.
- Extreme pressures to >1,000psig can be achieved with our ceramic tube sheet based bundles.
- Simulations show that relatively low H₂O:CO ratios can be used (<2:1) and still meet the DOE CCS targets.
- Multiple packed beds + membrane separators in series can approach true membrane reactor operation. There may be operational advantages and hardware simplifications to this mode.

CMS Performance Stability: H_2S Removal during NCCC Testing

Testing Parameters

<u>Membrane</u> 86-tube CMS


Operating Conditions
T~ 250 to 300°C
P~ 200 to 300 psig

<u>Pretreatment</u>
Particulate trap, no other gas cleanup.

 $\frac{Composition}{H_2 \sim 10 \text{ to } 30\%}$ $CO \sim 10\%$ $CO_2 \sim 10\%$ $N_2, H_2O \sim Balance$

Trace Contaminants $NH_3 \sim 1,000ppm$ Sulfur Species \sim 1,000ppm HCl, HCN, Naphthalenes/Tars, etc.

NCCC Slip Stream Testing: H_2S Feed and Permeate Composition

