

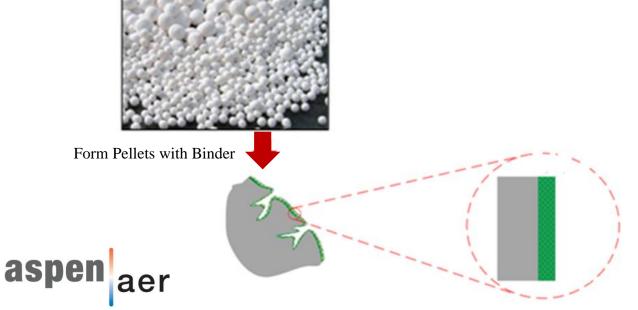
Development and Testing of Aerogel Sorbents for CO₂ Capture

2015 CO₂ Capture Technology Meeting Pittsburgh, Pennsylvania June 23 – 26, 2015

*Redouane Begag, George Gould, and Shannon White Aspen Aerogels, Inc.

Project Overview

"AFA"


Develop and bench-scale test an advanced aerogel sorbent for post-combustion CO₂ capture from coal-fired power plants

Amine Functionalized Aerogel Sorbent

Develop Aerogel Sorbent at Bench Scale for CO₂ Capture

- Improve Amine Functionalized Aerogels (AFA)
- Convert optimized sorbent into bead form
- Develop pellet binder formulations, and forming process
- Develop SO_x diffusion barrier for AFA sorbents
- Test & evaluate sorbent technology at bench scale

Bench Scale Evaluation

Develop Compatible SO_x Resistant Binder

Project Objectives

- 1. Optimize sorbents for improved CO_2 capacity and SO_X poisoning resistance.
- 2. Convert optimized sorbent into durable pellet and bead form for analysis.
- 3. Produce the best candidate sorbent form (bead or pellet) in larger quantities for fluidized bed testing.
- 4. Assess the sorbent in fluidized bed bench-scale testing.
- 5. Conduct a technical and economic assessment of the sorbent technology and process.

Project Team

- Period of Performance:
 - 10-1-2013 through 09-30-2016
- > Funding:
 - U.S.: Department of Energy: \$2.99M
 - Cost share: \$ 0.77 million
 - Total: \$3.76 million

aspen aerogels

	BP#	Description
	BP1 (2013 – 2014)	AFA Sorbent Development
		Pellet Development and Optimization
		Sorbent Evaluation
	BP2 (2014 – 2015)	Aerogel Bead Fabrication
$\left(\right)$		Coating Development
		Coated Pellet and Bead Evaluation
	BP3 (2015 – 2016)	Pellet (or Bead) Production
		Fluidized Bed Evaluation
		Techno-Economic Evaluation
		Environmental Health and Safety Evaluation

Amine Functionalized Aerogel (AFA) Development

- > High surface/high porosity material
- Hydrophobic to enhance CO₂ adsorption selectivity and stability
- Low specific heat, thus low energy regeneration
- High temperature stability
- Good routes for manufacture at reasonable cost and at high volume

Sorbent CO₂ Capture Performance

- High total and working CO₂ adsorption capacities (~20 wt.%, ~8 wt.%)*
- Fast CO₂ adsorption kinetics (<15 min. to reach 80% of total CO₂ capacity)**
- Stable for at least 250 adsorption/desorption cycles

Regeneration Temperature and Delta Temperature (\DeltaT)

- Reduced the required regeneration temperature below 130 °C and kept the CO₂ working capacity above 6 wt.% target.

Moisture Uptake

- AFA moisture uptake > 1 wt.%
- However, AFA has high preferential adsorption of CO₂ vs. H₂O
- Maintaining acceptable CO₂ loading performance by reducing cycling time.

* BP1 targets: > 12 wt.%, and > 6 wt.% (@ 40 - 100 °C, adsorption/desorption cycle)

** 40 °C and 0.15 CO_2 bar

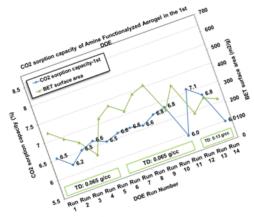
aerogels

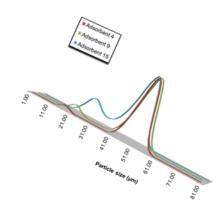
aspen

Accomplishments to Date

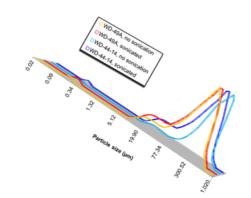
Pellet Sorbent Development

- 300 350 micron size pellets prepared.
- 85% capacity retention of the corresponding powder.

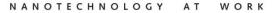

SO₂ Resistant Coating Development (on-going)

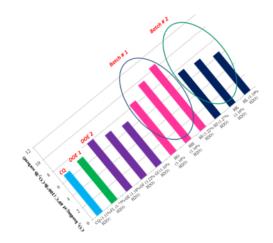

- Different coatings have been tested on sorbents in the presence of SO_{2.}
- Continuing SO₂ resistant coating optimization with goal of minimizing degradation of CO₂ capture performance.

Sorbent Bead Development (on-going)


- Optimum sorbent formulation used to produce aerogel beads.
- Bead sizes 0.3 1.5 mm have been fabricated.

aspen aerogels





Technical Progress

Top two AFA formulations from BP1

- AFA Sorbent Type #1

○ Direct amine grafting process, using amino-silane precursors/sol-gel process.
○ High thermal stability (~ 190 °C), CO₂ capacity (~ 14.3 wt. %).

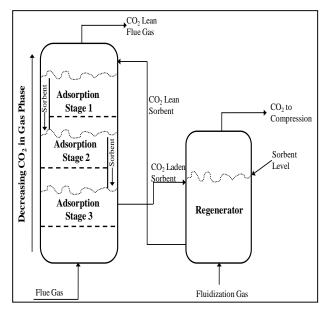
- AFA Sorbent Type # 2

- o "Double functionalization" process by amine-grafting and impregnation methods.
- \circ Thermally stable up to 100 110 °C, high CO₂ capacity (> 15.4 20 wt.%).

Performance Trade?

Enhanced Capacity vs. Thermal Stability

AFA CO₂ Capture Performance


Top AFA sorbent performance under 100% CO₂ (TGA):

Sorbent Type #1

	Temp. swing adsorption/desorption cycle		
	@ 40°C - @ 40°C @ 70°C 100°C - 120 °C - 120°C		
Total CO ₂ capacity (wt.%)	13.8	13.3	8.9
Working CO ₂ capacity (wt.%)	6.2	9.8	6.4

Sorbent Type #2

	Temp. swing adsorption/desorption cycle		
	@ 40°C - 100°C	@ 40°C − 120 °C	@ 70°C - 120°C
Total CO ₂ capacity (wt.%)	17.3	17.2	10.8
Working CO ₂ capacity (wt.%)	5.8	10.3	6.5
Heat of reaction (kJ/mole CO ₂)	50 – 60 (MEA ~ 84 kJ/mole CO ₂)		
spen aerogels			

ADAsorb™ Process Overview

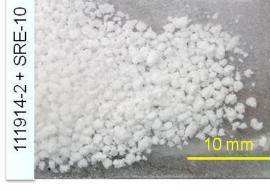
- High working capacity
- Low ΔT (thus low energy regeneration)
- Sorbent is thermally stable

a

Pelletization of Powder Aerogel (AFA) Sorbent

Issues

- Degradation of CO₂ performance by 50% when AFA pelletized with Standard Binder Solution (StdBS).
- Sorbent Type #1 (1N) not compatible (dissolved) with StdBS.


Progress

- Applied SRE* coating.
- Sorbent Type #1 pellets (with SRE): 12.5 wt.% (~ 13.7% loss)
- Attrition test using ASTM D5757.
 Attrited weight < 0.1%

Plan of Action

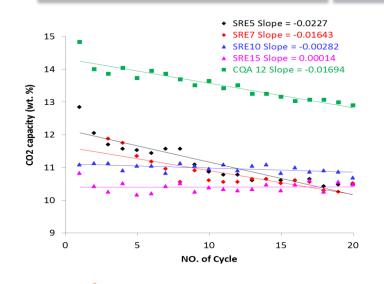
 Optimize pelletization process (mixing, extrusion and drying) to reduce performance degradation

Before: "pellets" with StdBS

Now: pellets with SRE

aspen aerogels

*SRE is a coating designed by UA for SO_2 poisoning resistance. Also used for pelletization.


SO₂ Removal Strategy and Process

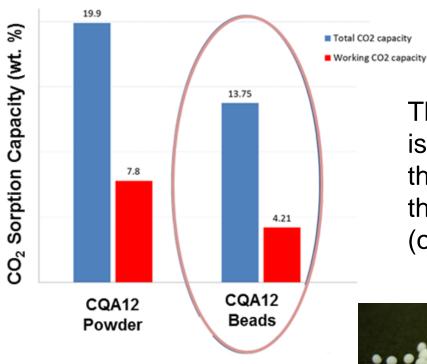
- Amine-based sorbents suffer from SO₂ poisoning.
- There is currently <u>**not**</u> a sorbent which only adsorbs CO_2 without adsorbing SO_2 .
- SO_2 not only poisons the sorbents but also decreases the purity of desorbed CO_2 .
- The degree of SO_2 removal depends on important factors such as the sorbent tolerance to SO_2 and cost of the sorbent replacement and/or regeneration
- Current design of flue gas desulphurization (FGD) units can achieve more than 95 % removal of SO_2
- Effectiveness of the SO₂-resistant coating (develop by UA) is verified to reduce the SO₂ poisoning on the aerogel sorbents.
- Recent results exhibited only 4% degradation in the CO_2 capture capacity after a 20-cycle exposure to 40 ppm SO_2 in the simulated flue gas.
- UA has also proposed a desorption process to achieve both high-purity CO_2 with an insignificant energy penalty.

aspen aerogels

SO₂ Resistant Coating Development for AFA Pellets

Issues	Progress	Plan of Action
 SO₂ poisons Sorbent Type #2 ~ 13% degradation in CO₂ capture capacity after 20 cycles in presence of 40 ppm SO₂ 	 Developed SRE series SO₂ resistant coating SRE-10 & SRE-15: < 4% degradation with cycling < 25% capture capacity loss on cycle 1 due to coating 	 Reduce 1st-cycle capture capacity drop (compensate amines) Study effect of moisture on the SRE coating Higher SO₂ conc. testing

Sample	Polymer Linker	Cycle 1 CO2 capacity (Wt. %)	Cycle 20 CO2 capacity (Wt. %)	Degradation
SRE-5	5%sln.	12.80	10.50	18.48%
SRE-7	7%sln.	11.88	10.52	11.48%
SRE-10	10%sln.	11.09	10.65	3.97%
SRE-15	15%sln.	10.82	10.47	3.18%
CQA 12	/	14.83	12.89	13.00%



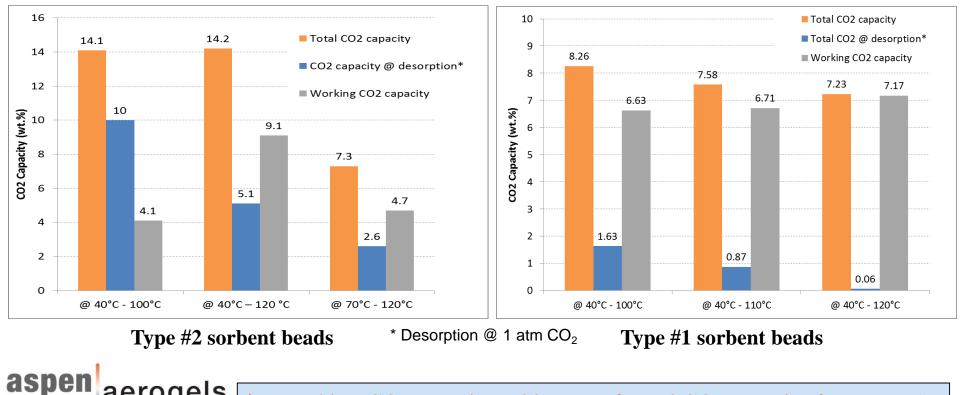
NANOTECHNOLOGY AT WORK

aerogels

aspe

AFA Sorbent Fabrication in Bead Form

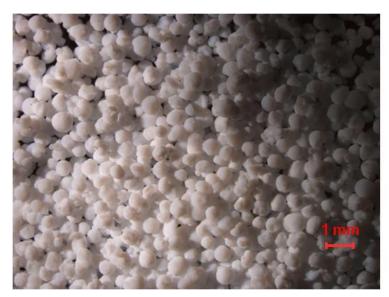
The objective of making sorbent beads is to skip the pelletization process; thus reducing the cost of production if the AFA sorbent beads perform better (or "as good as") the pellets.


aerogels

aspen

Bead AFA Sorbent CO₂ Capture Performance

- Optimum AFA formulations used in bead process optimization
- Bead size and quality depends on: \triangleright
 - Mixing speed of the "inert medium"
 - Gel time of the AFA sol
 - Temperature of the "inert medium"


Working CO₂ capacity ~ 80-99% of Total CO₂ capacity for Type #1

aerogels

AFA Sorbent Fabrication in Bead Form

Different size beads (density ~0.25 g/cc) have been prepared and are being tested at ADA:

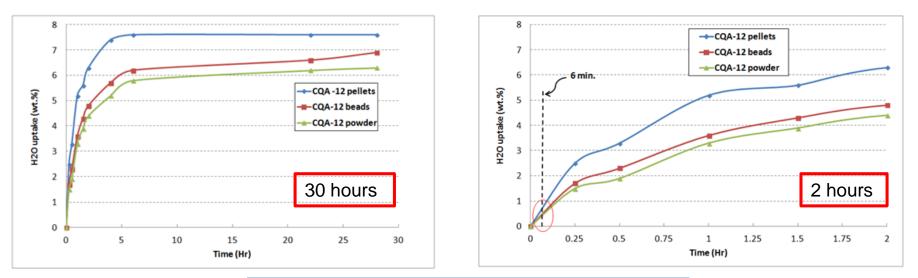
- 0.60 1.00 mm
- 0.35 0.60 mm
- < 0.35 mm



Issues	Plan of Action
 Amine leaching out during bead process fabrication. Long gel time of AFA sol formulations. "medium inert" might affect bead sorbent CO₂ capture performance. 	 Improve the conditions of bead prep. Increase working CO₂ capacity of the beads above 6 wt.% at reduced ΔT. Apply SO₂ resistant coating on beads and assess performance.

aspen aerogels

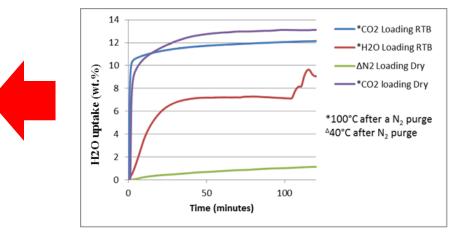
AFA Sorbent Performance Comparison (Type #2)


Working CO₂ Capacity

- CQA-12 sorbent powder exhibits definitively the optimum performance.
- CQA-12 beads have slightly better capacity than pellets.
- Binder/coating decreases CQA-12 pellet performance.
- Total and working CO₂ capacities are maximized when temperature of adsorption is 40 °C and temperature of desorption is 120 °C.

aspen aerogels

Performance Comparison for Water Uptake


Water uptake @ 40 °C and 60% RH

< 1 wt.% water adsorption @ < 6 minutes

The sorbent cycling time may be reduced to control moisture loading and still maintain acceptable CO_2 loading performance.

SO₂ Resistant Coating Development on AFA Beads

Sample	Process	CO ₂ Capture Capacity (wt.%)	Difference
AFA Bead*, uncoated	/	11.18	/
AFA Bead, coated, SRE-10	1	6.38	- 42.9%
AFA Bead, coated, 1% XL	2	13.11	+ 17.3%
AFA Bead, coated, 3% XL	2	14.12	+ 26.4%
AFA Bead, coated, 5% XL	2	14.52	+ 29.9%

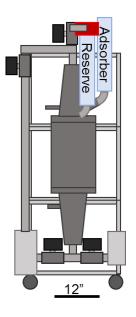
> The total CO_2 capture capacity **increased** using Process #2

aerogels

aspen

Future Plans

- Finalize bead fabrication process (Aspen).
- Finalize the optimization of SRE coating composition and process application (Akron).
- Crush strength (ADA).
- Perform the attrition tests according to the standard protocol based on the Jet Cup Attrition Standard Procedure (representative of the process to be used) (ADA).
- Test cyclic stability of the most promising sorbent over 1000 cycles (ADA).
- Investigate alternative regeneration process (low CO₂ partial pressure with steam as sweep gas) to increase CO₂ desorption of sorbent and improve working capacity (ADA).



Future Plans

- Determine the CO₂ vs. H₂O uptake in MSFB (mass spec fixed bed) for promising sorbents (ADA).
- Bench-Scale CO₂ Capture Unit (Akron):
 - Build and optimize 1-kW bench-scale fluidized bed CO₂ capture unit.

Performance vs. Goals

	Verification Method		Planned completion	
		Target	date	date
	Total CO_2 adsorption capacity ⁽¹⁾	> 17 wt.%	06/30/2015	09/15/2015 <i>Close to target</i> (14 wt.%)
	Working CO ₂ capacity ⁽²⁾	> 6 wt.%	06/30/2015	04/01/2015 <i>Exceeded target</i> (9.1 wt.%) ⁽³⁾
	Adsorption/desorption kinetics ⁽⁴⁾	Fast	03/31/2015	03/31/2015 <i>Met target</i>
	Water adsorption ⁽⁵⁾	< 1 % @ 40 °C	06/30/2015	06/01/2015 <i>Met target</i>
AFA (beads/pellets)	Cycling stability (CO ₂ adsorption/desorption)	Stable over 500 cycles.	06/30/2015	09/15/2015 Testing scheduled
	Size (micron)	300 - 350	04/30/2015	03/31/2015 <i>Met target</i>
	Attrition Index	< 3% ⁽⁶⁾	06/30/2015	03/31/2015 <i>Met target</i>
	Total CO_2 capacity in the presence of 40 – 60 ppm SO_2 and 80 ppm NO in flue gas.	< 10%	09/30/2015	04/30/2015 <i>Met target</i> ⁽⁷⁾

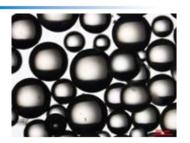
((1): Adsorption @ 40 °C, Desorption @ 100 - 120 °C and 0.15 CO_2 bar.

(2): Adsorption @ 40 °C, Desorption @ 100 - 120 °C and 1.0 CO_2 bar

(3): Desorption @ 120 °C and 1.0 CO_2 bar

(4): < 15 min. to reach 80% of total CO_2 capacity at 40 °C and 0.15 CO_2 bar

(5): During adsorption/desorption cycle (i.e. water adsorption should be < 1% wt. during the first 6 min of adsorption)


(6): loss under fluidizing condition for 3 hours.

(7): Testing in presence of NO and SO2 in flue gas is scheduled during the remaining of BP2.

Summary

- ➢ All BP2 milestones met and completed on schedule.
- Optimized process of AFA bead and pellet fabrication.
- \blacktriangleright High CO₂ capture performance of top AFA (beads) sorbent:

• Total CO ₂ capacity ~14 wt.%	• Fast adsorption kinetics
• Working CO ₂ capacity ~ 6 - 9.1 wt.%	• The rate of moisture uptake is < 1 wt.%

- > SRE coating proven as efficient SO_2 resistant coating.
 - Uncoated AFA: ~ 13% CO_2 capacity degradation
 - AFA pellets: < 4 % CO₂ capacity degradation
 - AFA beads: Increased CO₂ capacity by 30%
- > The degree of SO_2 removal depends on:
 - Sorbent tolerance to SO₂ /cost of the sorbent /replacement and/or regeneration

Project Funding (DE-FE0013127):

U.S. Department of Energy (DOE-NETL)

DOE-NETL Project Manager - I. Andrew Aurelio

Team Acknowledgements:

- Aspen Aerogels Inc. (R&D group)
- > ADA-ES (M. Sayyah, M. Lindsay, W.J. Morris)
- University of Akron (L. Zhang, J. Yu, Y. Zhai, and S. Chuang)

Thank You

