

Hydrophobic, Physical Solvents for Pre-combustion CO₂ Capture: Experiments and System Analysis

Nicholas Siefert

Task Technical Coordinator Solvents—Maturation

CO₂ Capture Technology Conference 6/25/2015

Team Members: Sweta Agarwal, Hunaid Nulwala, Elliot Roth, Victor Kusuma, Fan Shi, Wei Shi, Jeff Culp, Sarah Narburgh, David Miller, and Dave Hopkinson

Outline

- Overall goal of project: Why Hydrophobic Solvent?
- Experimental Data & Computational Simulations
- System & Exergy Analysis

Process Flow Diagram: IGCC w/ CO₂ Capture

Exhibit 3-37 Case S1B and L1B Process Flow Diagram

http://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/Coal/LR_IGCC_FR_20110511.pdf

Background: Why Selexol operates < 40°C

- Higher CO₂ and H₂S selectivity against H₂ at lower temperature
- <u>Constraint</u>: Selexol will absorb any remaining water in syngas

% Water Condensed vs. Temperature of Syngas

Commercially Available Physical Solvents for AGR

Solvent	DEPG	PC	NMP	MeOH
Process Name	Selexol or Coastal AGR	Fluor Solvent	Purisol	Rectisol
Viscosity at 25°C (cP)	5.8	3.0	1.65	0.6
Specific Gravity at 25°C (kg/m^3)	1030	1195	1027	785
Molecular Weight	280	102	99	32
Vapor Pressure at 25°C (mmHg)	0.00073	0.085	0.40	125
Freezing Point (°C)	-28	-48	-24	-92
Boiling Point	275	240	202	65
at 760 mm Hg (°C)				
Thermal Conductivity (Btu/hr*ft*°F)	0.11	0.12	0.095	0.122
Maximum Operating Temperature (°C)	175	65	-	-
Specific Heat 25°C	0.49	0.339	0.40	0.566
CO ₂ Solubility (ft ³ /U.S. gal) at 25°C	0.485	0.455	0.477	0.425

Table 1 – Properties of Physical Solvents

Table 2 – Solubilities of Gases in Physical Solvents Relative to CO₂

These AGR solvents are <u>not</u> designed for warm gas CO₂ removal. Too hydrophilic and/or volatile for high temperature operation

Selectivity	DEPG at 25°C	PC at 25°C	NMP at 25°C	MeOH at -25°C
CO ₂ /H ₂	77	128	156	185
CO_2/N_2	50	119	NA	83
CO ₂ /CH ₄	15	26	14	20
H_2S/CO_2	8.8	3.3	10.2	7.1

http://www.bre.com/portals/0/technicalarticles/a%20comparison%20of%20physical%20solvents%20for%20acid%20gas%20removal%20revised.pdf

High Molecular Weight PDMS - Background

- <u>Objective</u>: Lower the cost of capturing CO₂ from syngas
- <u>Approach</u>: Develop hydrophobic solvents for separation of CO₂ from warm syngas
 PDMS

Low CO_2 Uptake and CO_2/H_2 Selectivity

High CO_2 Uptake and CO_2/H_2 Selectivity

Options for Hybrid PEG-PDMS

- Synthesized and Fully characterized by NETL/ORD
- To be synthesized and fully characterized by NETL/ORD

Experimental and Computational Results

Selexol vs. Hybrid @25°C

<u>Selexol</u>

- Hydrophilic
- MW = 280
- Viscosity = 5.8 cP, Pr = 63
- Specific heat = 2.06 kJ/kg·K
- Density = 1030 kg/m³
- Thermal cond = 0.19 W/m·K
- Surface tension ~ 32 mN/m
- Vapor Pressure = 0.0007 mmHg
- CO₂/H₂ selectivity ~ 100

Hybrid PDMS-PEGDME

- Hydrophobic
- MW = 427
- Viscosity = 4.8 cP, Pr = 71
- Specific heat = 1.77 kJ/kg·K
- Density = 936 kg/m³
- Thermal cond = 0.12 W/m·K
- Surface tension = 22.1 mN/m
- Vapor Pressure << 0.0007 mmHg
- CO₂/H₂ selectivity ~ 50

Selexol vs. Allyl Pyridinium Tf₂N @25°C

<u>Selexol</u>

- Hydrophilic
- MW = 280
- Viscosity = 5.8 cP, Pr = 63
- Specific heat = 2.06 kJ/kg·K
- Density = 1030 kg/m³
- Thermal cond = 0.19 W/m·K
- Surface tension ~ 32 mN/m
- Vapor Pressure = 0.0007 mmHg
- CO₂/H₂ selectivity ~ 100

[aPy][Tf2N]

- Hydrophobic
- MW = 399

- Viscosity ~25 cP, Pr ~ 200
- Specific heat = 1.11 kJ/kg·K
- Density = 1515 kg/m³
- Thermal cond = TBD*
- Surface tension = 35.2 mN/m
- Vapor Pressure <<< 0.0007 mmHg
- CO₂/H₂ selectivity ~ 100

CO₂ solubility in physical solvents at 40°C

CO₂ solubility = mol of CO₂ absorbed per liter of neat solvent

H₂ solubility in physical solvents at 40°C

 H_2 solubility = mol of H_2 absorbed per liter of neat solvent

Adding Ionic Liquid to HPDMS will increase Viscosity:

Allows for a Tunable Hydrophobic Solvent Mixture depending on Application

Measurements by Dr. Elliot Roth

Stirred Reactor Kinetics – k_I

Constant Stir Speed = 600 RPM		CO ₂	H ₂
100% HPDMS	25°C 40°C	7.5·10 ⁻⁴ s ⁻¹ 1.1·10 ⁻³ s ⁻¹	2.8·10 ⁻³ s ⁻¹ 3.4·10 ⁻³ s ⁻¹
100% [aPy][Tf ₂ N]	25°C 40°C	~2·10 ⁻⁴ s ⁻¹	~6·10 ⁻⁴ s ⁻¹ ~9·10 ⁻⁴ s ⁻¹
90% HPDMS / 10% [aPy][Tf ₂ N]	25°C	6.0·10 ⁻⁴ s ⁻¹	1.4·10 ⁻³ s ⁻¹

time t

System & Exergy Modeling

System Modeling: Regression into Aspen Plus

- Regression of available experimental data on Hybrid PDMS solvent into Aspen to estimate required unary and binary parameters of PC-SAFT
- In order to regress CO₂/H₂ solubility, PC-SAFT method also required specific heat vs. T, density vs. T, and viscosity. vs. T
- ENRTL-RK method used for lonic Liquid

Optimize Chemical Processes with Aspen Plus'.

The industry's leading process simulation software.

Aspen Plus is a comprehensive chemical process modeling system, used by the world's leading chemical and speciality chemical organizations, and related industries to design and improve their process plants.

Overall IGGC-CCS Power Plant

GE IGCC with CO2 Capture

Portion Unique to CCS

Compressed CO₂

System Modeling: Aspen Plus Modeling

 Base Model for CO₂ capture using flash regeneration adapted from MIT IGCC-Selexol capture Aspen Model

System Modeling: Aspen Plus Modeling

 Base Model for CO₂ capture using flash regeneration adapted from MIT IGCC-Selexol capture Aspen Model

Field and Brasington, "Baseline Flowsheet Model for IGCC with Carbon Capture," Ind. Eng. Chem. Res., 2011, 50 (19), p 11306.

Exergy Analysis

- Exergy is the maximum possible useful work that can be generated by bringing a system into thermal, mechanical, and chemical equilibrium with its surrounding environment.
 - Reference state is: 0.1 MPa, 300 K, 77% N₂, 21 % O₂, 2% H_2O , and 400 ppm CO_2

$$\hat{e} = \left[\hat{h}(T, p) - \hat{h}_{env}(T_{env}, p_{env})\right] - T_{env} \cdot \left[\hat{s}(T, p) - \hat{s}_{env}(T_{env}, p_{env})\right]$$

• Exergy destruction is the loss of work potential due to irreversible entropy generation.

$$\dot{\Phi}_{des} = T_o \cdot \dot{\sigma}_{irr}$$

Exergy Analysis: Standard IGCC-CCS

		Subsystem			Exiting Stream				
		WGS	Cooling	Capture	Compress ion	Clean Syngas	Compressed CO ₂	Sour Water	Total
Power	[MW]	0.00	0.00	-14	-26	0.00	0.00	0.00	
Exergy Destruction	[MW]	21	0.04	20	6	0.00	0.00	0.00	
Exergy in Heat Leaving	[MW]	80	15	0.4	1	0.00	0.00	0.00	
Exergy Remaining	[MW]	0.00	0.00	0.00	0.00	2114	151	2	
			Inlet exergy to WGS = 2371 MW						
Power / Inlet Exergy	[%]	0.00%	0.00%	-0.58%	-1.09%	0.00%	0.00%	0.00%	-1.67%
Exergy Destruction / Inlet Exergy	[%]	0.89%	0.00%	0.84%	0.27%	0.00%	0.00%	0.00%	2.00%
Exergy in Heat Leaving / Inlet Exergy	[%]	3.39%	0.62%	0.02%	0.05%	0.00%	0.00%	0.00%	4.07%
Exergy Remaining / Inlet Exergy	[%]	0.00%	0.00%	0.00%	0.00%	89.17%	6.36%	0.07%	95.60%
Total	[%]								100.00%

Thank You

- Thanks to: Sweta Agarwal, Hunaid Nulwala, Elliot Roth, Fan Shi, Wei Shi, Victor Kusuma, Megan Macala, Regina Woloshun, Brian Kail, Robert Thompson, Sarah Narburgh, David Miller, Dave Hopkinson, Bob Enick, John Kitchin, and Dave Luebke
- Funding from the NETL Strategic Center for Coal

• Questions:

Back-up Slides

CO₂ solubility in physical solvents at 25°C

CO₂ solubility = mol of CO₂ absorbed per liter of neat solvent

H₂ solubility in physical solvents at 25°C

 H_2 solubility = mol of H_2 absorbed per liter of neat solvent

Bare Equipment Costs: H-PDMS

Bare Equipment Costs: CO₂ Compression Cycle

Cost of LP Compressor and Intercooler: \$4.5M

Cost of MP, HP Compressors, Intercoolers and Liquid CO2 Pump: \$12.7M

Our Economic Model

• Economic Model Assumptions:

- There is an existing IGCC Power Plant with H₂S Removal
- 1 Years for Construction (for CO₂ Capture Equipment)
- 30 Years of Operations
- 80% Capacity Factor
- 7% Inflation-adjusted Discount Rate
- Plant Cost Ratio = 5 = Total Capital Cost / Bare Equipment Costs
- O&M = 4%/yr of upfront capital cost
- Bare Capital Cost estimates calculated from equations taken from various sources (Sieder Textbook, AspenPlus, IECM)
- Used to calculate the levelized cost of capturing CO₂
 - Levelized cost = Operating costs plus capital costs levelized per ton of CO₂ captured

Capital & Operating Cost Distribution Chart for CO₂ Capture System using HPDMS

Capital Cost Breakdown

Operating Cost Breakdown

Comparison of Levelized Cost of Capture

