

power generation group

Atmospheric Iron-Based Coal Direct Chemical Looping Process for Power Production

Pittsburgh, PA. Jun 26. 2015

Project Objectives

Phase I Project objectives: 2012 - 2013

- Evaluate commercial viability of OSU's coal-direct chemical looping process for power production with CO₂ capture.
- Perform a techno-economic evaluation of the commercial design.

Phase II Project Objectives:2013-2016

- Reduce technology gaps identified in Phase I by conducting laboratory testing and small pilot-scale testing.
- Update design and cost performance of the commercial 550 MWe CDCL power plant
- Re-evaluate the CDCL technology and identify development pathway for commercialization in year 2025.

Project Participants

Federal Agencies:

• DOE/NETL

Project participants:

- The Babcock & Wilcox, PGG
- The Ohio State University
- Clear Skies Consulting

Industrial Review Committee:

- American Electric Power
- Consol Energy
- Dayton Power & Light
- Duke Energy
- First Energy
- Ohio Development Service Agency

- Commercialization Path
- Phase I: CDCL Concept and Techno-Economic Analysis
- Phase I: Technology Gaps
- Phase II: Pilot Design
- Phase II: Laboratory Testing and Studies
- > Project Schedule
- Conclusions and Acknowledgments

Commercialization Path

- Commercialization Path
- Phase I: CDCL Concept and Techno-Economic Analysis
- Phase I: Technology Gaps
- > Phase II: Pilot Design
- Phase II: Laboratory Testing and Studies
- > Project Schedule
- Conclusions and Acknowledgments

Chemical Looping Concept

CDCL Moving Bed Reactor Concept

- Commercialization Path
- Phase I: CDCL Concept and Techno-Economic Analysis
- Phase I: Technology Gaps
- Phase II: Pilot Design
- Phase II: Laboratory Testing and Studies
- > Project Schedule
- Conclusions and Acknowledgments

CDCL Commercial Plant Design and Engineering

OSU's experimental data was converted into a commercial 550 MWe CDCL power plant.

- Material and Energy Balance
- Process Flow Diagrams
- Equipment Drawings
- Arrangement Drawings
- Plant layout Drawings
- 3-D Models

Modular Loop Design

CDCL Technology Comparison

	Base Plant	MEA Plant	CDCL Plant
Coal Feed, kg/h	185,759	256,652	205,358
CO ₂ Emissions, kg/MWh _{net}	801	111	31
CO ₂ Capture Efficiency, %	0	90	96.5
Net Power Output, MW _e	550	550	550
Net Plant HHV Heat Rate, kJ/kWh (Btu/kWh)	9,165 (8,687)	12,663 (12,002)	10,084 (9,558)
Net Plant HHV Efficiency, %	39.3	28.5	35.6
Cost of Electricity, \$/MWh	80.96	132.56	102.67
Increase in Cost of Electricity, %	-	63.7	26.8

- Commercialization Path
- Phase I: CDCL Concept and Techno-Economic Analysis
- Phase I: Technology Gaps
- > Phase II: Pilot Design
- Phase II: Laboratory Testing and Studies
- > Project Schedule
- Conclusions and Discussion

Technology Gap Analysis

CDCL Technolgy Gaps

Design/Technology Issues	Ongoing/Past Mitigation	Planned Mitigation	Future Mitigation
Particles			
Manufacturing Cost	Under OSU's SOW	Particle Manufacturer	
Attrition	NCCC	Lab 2" BFB / Envergex	
High Temperature Resistance	TGA	TGA	
Reducer Design			
Coal Injection & Distribution	OSU's Sub-Pilot	Small-pilot Unit	3 MWth-Pilot
Char Residence Time	OSU's Sub-Pilot	TGA, Small-pilot Unit	
Ash Separation / Enhancer Gas	OSU's Sub-Pilot	Small-pilot Unit	
Pressure Drop	Phase I (Calculation)	Small-pilot Unit	
CO ₂ Purity	Phase I (Calculation)	Small-pilot Unit	
Sulfur, NOx, Hg Emissions	OSU's Sub-Pilot	Small-pilot Unit	3 MWth-Pilot
Alkaline Management	2" BFB (Preliminary)	2" BFB	3 MWth-Pilot
Combustor Design			
Heat Exchanger surface	B&W's CFB Technology		3 MWth-Pilot
Auto-thermal Operation	Phase I (Calculation)	Small-pilot Unit	3 MWth-Pilot
System			
Operation	NCCC	Small-pilot Unit	3 MWth-Pilot
Start up/Shut down	NCCC	Small-pilot Unit	3 MWth-Piot
Safety	NCCC	Small-pilot Unit	3 MWth-Pilot

- Commercialization Path
- Phase I: CDCL Concept and Techno-Economic Analysis
- Phase I: Technology Gaps
- Phase II: Pilot Design
- Phase II: Laboratory Testing and Studies
- > Project Schedule
- Conclusions and Acknowledgments

Pilot Unit Design

Physical Specifications

•Materials: Refractory lined Carbon Steel •Overall Height: 32 ft

•Footprint = 20' x 20'

Process Specifications

•Thermal rating: 250 kWth

- •Coal Feed Rate: 70 lb/hr
- •Coal size: Pulverized coal
- •Max Operating Temperature: 2012 °F
- •Oxygen Carrier: Iron based
- •Reducer : Counter-current moving bed
- •Combustor : Bubbling bed
- •Particle tranport: Pneumatic

Oxygen Carrier Specifications

•Active metal: Iron based

babcock & wilcox power generation group

CDCL 250 kW_{th} Pilot

- Commercialization Path
- Phase I: CDCL Concept and Techno-Economic Analysis
- Phase I: Technology Gaps
- > Phase II: Pilot Design
- Phase II: Laboratory Testing and Studies
- > Project Schedule
- Conclusions and Acknowledgments

Coal Flow Model Tests: Fines entrainment

Fines Residence Time in Moving Bed

Ash and Fines residence time (Tr)

Particle Characterization

Photograph of TGA Analyzer

Gas Delivery System

Time to reach 50% conversion as a function of gas flow rate

Particle Reduction Studies

Particle Oxidation Studies

Particle Integrity Studies: Carbon formation

CO₂ Evalution after carbon formation on oxygen carrier particles

Above 900 °C there is no carbon formation

Alkaline Agglomeration Test

Particles aglomerate at very high alkaline content : ~9.1wt.%

Particle Regeneration

Agglomerated particle caused by alkaline can be regenerated in the combustor.

Regenerated particles

- Commercialization Path
- Phase I: CDCL Concept and Techno-Economic Analysis
- Phase I: Technology Gaps
- Phase II: Pilot Design
- Phase II: Laboratory Testing and Studies
- Project Schedule
- Conclusions and Acknowledgments

Project Schedule

	2014						2015												2016												
Phase II	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10
Task 1. Project Management and Planning																															
Task 2. Laboratory Testing and Oxygen Carrier Characterization																															
Task 3. Pilot Facility Design, Construction and Testing																															
Pilot Plant Design Pilot Plant Cost Estimate																														\square	
Pilot Plant Construction Pilot Plant Testing																															
Task 4.Data Analysis and Update of Commercial Plant Economic Analysis																															
Task 5. Phase II Final Report																															

- Commercialization Path
- Phase I: CDCL Concept and Techno-Economic Analysis
- Phase I: Technology Gaps
- Phase II: Pilot Design
- Phase II: Laboratory Testing and Studies
- Project Schedule

Conclusions and Acknowledgments

Conclusions

- CDCL offers a cost-effective alternative for coalbased power generation with carbon capture
- The commercial CDCL modular design is ideal for commercial deployment of the technology
- Cold flow model and laboratory testing is confirming assumptions and design features of the 250 kWth pilot unit and the commercial design
- The design of 250 kWth pilot plant has been completed and we are moving soon towards the construction and testing

Acknowledgments

This material is based upon work supported by the Department of Energy under Award Number DE-FE0009761