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Objective is to develop PZ with advanced
regeneration at 150°C

P7 » Optimize solvent (8m vs 5m)
» Demonstrate solvent robustness

e Two stage flash (2SF)
» Advanced flash stripper (AFS)

Regeneration

e Formation and control

Aerosols e Characterization




Phased testing at UT SRP and NCCC
to optimize PZ absorption/regeneration

« 2SF « 1SF « AFS * AFS
« 8m PZ e 5m PZ e 5vs 8m » 5m PZ
» Aerosol o Aerosol o Aerosol

Completed Completed Completed Pending
NETL
Approval
0.1 MW 0.5 MW
L ——)
CO, in air Flue gas

BP1 BP2



The Lessons

e 5m PZ Is a superior solvent
e AFS minimizes energy use for regeneration

e 5m PZ + AFS decreases cost of CO» capture

e Amine aerosols can be measured with FTIR
and PDI



Sm Piperazine
is a superior solvent

HN NH

__/



PZ solvent properties

—ast kinetics
High capacity
_ow volatility

Resistant to Degradation

— Thermal (stable to 150°C)

— Oxidation (4x more stable than MEA)

— Nitrosation (MNPZ decomposes at 150°C)

Solid solubility limits its application




Sm PZ: optimizes advantages of PZ

Wider solubllity

e Can be used at lower lean loading without solids ppt

* NoO solids precipitation at rich loading



Sm PZ has a wider solubility window
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S5m PZ: optimizes advantages of PZ

Wider solubllity

e Can be used at lower lean loading without solids ppt

* NoO solids precipitation at rich loading

Faster kinetics

e 33% faster absorption kinetics vs. 8m PZ

Amine  m K;'..*1e7 u AC, Ty,
mol/s-Pa-m’  cp mol/kg C

PZ 8 8.5 11 0.84 163
5 11.3 4 081 163



Sm PZ improved CO, removal at SRP

Solvent Gas Rate Titration
Rate LLDG Measured
Run Solvent
Removal
GPM ACFM  mol CO2/molalk
9 5m : 80%
Test 1 14 00 0.24
es 14  8m 75%
8 5m 96%
Test 2 14 350 0.24
es 15  8m 93%
3 5m 0.22 949,
Test 3 10.2 350
es 16  8m 0.23 91%




Sm PZ: optimizes advantages of PZ

Wider solubility

e Can be used at lower lean loading without solids ppt

e No solids precipitation at rich loading

Faster kinetics

e 33% faster absorption kinetics vs. 8m PZ

Lower viscosity

e Higher heat transfer coefficients for cross exchangers,
trim cooler, absorber Intercooler amne |m i, *er ul ac, T

mol/s:Pam’ cp mol/kg C
PZ 8 8.5 11 0.84 163
5 11.3 4 081 163

max



Sm PZ improved cross exchanger
performance and reduced heat duty

Comparison 2
(293°F 0.24 Idg)

Comparison 1
(293°F 0.24 Idg)

8 9
PZ concentration (m) 5 8 5 8
Solvent capacity
(Ib CO./Ib solution) 0.036 0.037 0.041 0.042
Total BPS ratio 25% 24% 26% 24%
Heat duty

(Gl/tonne CO,) 2.36 2.51 2.21 2.41
Cross X cold side AT (°F) 11.7 15.2 11.5 15.7
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The Advanced Flash Stripper (AFS)
minimizes energy use



Trim condenser
~140 °F

ColdrichX

Advanced Flash Stripper
with Sm PZ

~260 °F
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Absorber
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Reboiler

16



(5]




AFS has lower W, than SS
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Cold-rich bypass reduced energy
requirement of 2SF
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AFS reduced energy requirement by 25%
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bm PZ + AFS
decreases cost of CO,, capture



Sm PZ/AFS has lowest costs of
configurations modeled by UT

« PZ/AFS = $39.03/tonne (no TS&M)
e Econamine = $56.47/ton (no TS&M)



Amine Aerosols can be measured
by FTIR and
Phase Doppler Interferometer (PDI)



Amine aerosols cause high amine emissions

Nucleation sites In flue gas
» SO3/H2S0Oy
= Submicron fly ash
= SOs/amine
+ Amine condensation
= Amine/CO2/H»20 from solvent to aerosol

+ Poor collection of small drops Iin water wash

= Unacceptable amine emissions



PDI, FTIR measurements at SRP
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PDI, FTIR measurements at SRP
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PDI, FTIR measurements at SRP
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FT IR Samphng
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FTIR Sampling
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PZ emissions increase with 10 ppm H,SO,
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PDI with bypass sampling provided
high quality aerosol measurements

 In-situ analysis for agueous aerosols

« Measure 0.1 — 10 ym at high (10° part/cm3) concentrations

« Eliminate extractive sampling errors
— Sampling: isokinetic
— Dilution: concentration limitations, RH

— State: P/T -
Condensation/Evaporation 1 Baivan e\,.

— Transmission: impingement, I
diffusion, settling, deposition %E

1-'4” Ball Valve

S
"

PDI Analysis
Cell

Regenerativ e
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PDI Development

PDIGen.1  PDIGen.2 PDI Gen. 3

PDI| Geng:
e Custom PDI on 1” Duct (25 mm TX, 39° Cross, 50 —17.8 um laser)

e 0.1 ym lower detection limit, 10° #/cm3 estimate

32




Gen3 PDI detected 0.1 um particles
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BP2 test at NCCC pending NETL approval

« 2SE * 1SF « AFS « AFS
. 8m PZ * 5Sm PZ « 5vs 8m « 5m PZ
« Aerosol o Aerosol o Aerosol

Completed Completed Completed Pending
0.1 MW 0.5 MW
——

CO, in air Flue gas

BP1 BP2
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BP2 Test Objectives for NCCC

 Demonstrate energy performance &
operablility at 0.5-MW scale on coal-fired
flue gas
—-5mPZ
— AFS

« Confirm economic advantage of 5m PZ +
AFS

e Continue study of aerosol formation and
measurement



BP2 Schedule

Activity

October 2015 Authorization to begin BP2

January 2016 Process Design Package
completed
April 2016 AFS Skid PO issued

November 2016  AFS Skid delivered to NCCC

May — August NCCC Test Program
2017
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Sm PZ has advantage at SRP
with packing area is limited

L/G (mol/mol)

12

Conditions
Coal-Fired Boiler (14.7% CO,)
5 m PZ: LLDG = 0.18 mols CO,/mols alk.
8 m PZ: LLDG = 0.20 mols CO,/mols alk
9 F P*CO, @ 40C = 0,04 kPa
CD;Remnval = 90%
In-and-0ut Intercooling

6
5mPZ
3
S mPZ
0
0 20 40 60 80
Total Packing Metal Area/G ( m%/mol/s) 34
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