SOUTHERN COMPANY

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO₂ Removal from Coal-Fired Flue Gas

DE-FE0007525

Project Review Meeting June 24, 2015

Heat Integration with 25 MW KM-CDR at Plant Barry

• Funded by industry consortium

- Fully integrated CO₂ capture/compression
- Storage in Citronelle Dome
- 500 metric tons CO₂/day

Project Participants

Nick Irvin Jerrad Thomas

URS

Katherine Dombrowski Mandi Richardson Jack Cline

SOUTHERN

Tim Thomas Shintaro Honjo Masayuki Inui

Bruce Lani

Total Project Budget (\$MM)

Waste heat sources include flue gas and CCS plant streams

Boiler feed water will be heated with CO₂ Cooler and Flue Gas Cooler

CO₂ Cooler

Standard heat exchanger

Flue Gas Cooler

SOUTHERN

MHI proprietary heat exchanger

Flue Gas Cooler proven on low S coals

Carbon steel tubes in good condition after 2 years operation at Japanese plant

SOUTHERN

What happens with higher sulfur coals fired in US?

FGC Requires High D/S Ratio

SOUTHERN

Uncertainty around the reliability of the system with higher sulfur fuels (> 1% S)

Flue Gas Cooler captures SO₃

- Operates downstream of the APH
- Mechanism for removal of SO₃ from flue gas

- $-SO_3(g) + H_2O(g) --> H_2SO_4(g)$
- $-H_2SO_4$ (g) --> H_2SO_4 (l)
- H₂SO₄ (I) condenses on fly ash in flue gas and a protective layer of ash on tube bundles
- Flue Gas Cooler tube skin temperature < SO₃ dewpoint
 - Alkaline species in fly ash (Ca, Na) neutralize H₂SO₄
 - Silicates, etc. physically adsorb H₂SO₄

Other benefits of Flue Gas Cooler

 Improve removal of Hg, Se, SO₃ across the ESP

- Reduce AQCS cost
 - Improve ESP performance
 - Improve FGD performance
 - Improve CCS performance
- Potential to simplify boiler/steam turbine cycles
- Improve plant heat rate

Heat integration eliminates LP heaters

Heat integration eliminates LP heaters

Heat integration eliminates LP heaters

Heat integration increases plant efficiency

Heat integration decreases cost of CCS

SOUTHERN

Analysis per 2010 DOE Cost and Performance Baseline

Heat Integration Challenges

 Highly integrated systems incorporating waste heat recovery have yet to be demonstrated at any scale in the U.S.

- Overcome skepticism in U.S. by proving system reliability
- Process control during transients/perturbations, which are typical in power plant operations
- Removal performance of specific impurities not yet quantified for varying operating conditions
- Uncertainty around the reliability of the system with higher sulfur fuels (> 1% S)

Project Objectives

Quantify tangential benefits

- Better ESP performance
- Increase SO₃, Hg, Se capture
- Reduce CCS solvent consumption
- Reduce FGD H₂O consumption

Resolve operational problems of integration

Quantify energy efficiency improvements

PROJECT = Boiler feed water will be heated with CO₂ Cooler and Flue Gas Cooler

General Layout

Flue Gas Cooler Area – Plan View

Flue gas dampers

Side View

Flue Gas Cooler

Flue Gas Cooler shell fabrication

Flue Gas Cooler Installed

CO₂ Cooler General Arrangement

CO₂ Cooler & **Platform Construction**

CO₂ Cooler Installed

BP3 completes March 2016

Remaining project work

Test Program

• Performance

- Verify max heat recovery performance and controllability of TCV
- Water consumption reduction to FGD, cooling water reduction to Quencher

SOUTHERN

- Boiler condensate water quality and tube leak potential
- Total economic evaluation
- Turndown Load Operation
 - Confirm heat recovery performance at turndown load (same items as above)

Impurities Removal

- Verify ESP performance (ash characteristics, trace metals removal, impact of Br injection)
- Long Term Durability
- Material Evaluation