

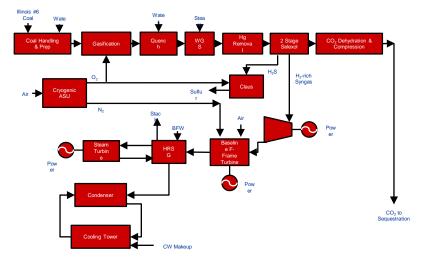
Assessment of a Metal Membrane for an IGCC Power Plant (A TEA Exemplar)

James C. Fisher II

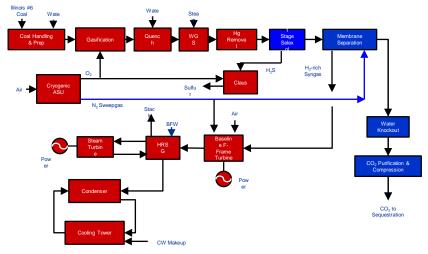
Office of Program Performance and Benefits Date: 06/23/2015

Example Case

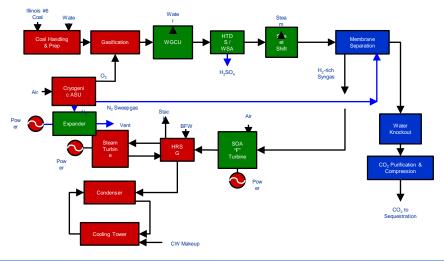
- Objective: Assess a novel technology using the QGESS technology
- Novel technology: Precious metal hydrogen membrane in an IGCC plant using a GE gasifier
- Background on precious metal membrane:
 - Generally Palladium, although other metals can be used to enhance performance and life
 - Transfers hydrogen via ion mechanism resulting in infinite selectivity
 - Costly
 - Operates at process temperature
 - Required technologies and process modifications include:
 - Sulfur removal
 - Nitrogen diluent is used as sweep gas
 - CO₂ purification


Technology Analysis Plan

- Example Objective: Determine and quantify the key parameters that effect COE in a IGCC plant; aspirational R&D targets will be used.
- Reference case is case GE example with capture from the Bituminous Baseline¹
 - Justification: The GE example provides the lowest COE gasification plant with capture and implementing this technology will show a further reduction in COE
- Integration plan:
 - Removal of Selexol CO₂ removal section
 - Utilize turbine diluent Nitrogen as sweep gas for the permeate side
 - CO₂ requires drying and perhaps further purification
 - Lower CO₂ compression requirements
- Additional Purposed TEA: high temperature desulfurization
 - Justification: Membrane operates at process temperature benefit could be realized by maintaining syngas temperature
 - Implement RTI's warm gas cleanup train
 - Advanced technology tested at TECO 50 MWh scale


Evaluated Cases

Reference Case from Baseline



Case	Baseline Case		Study		
Case	(Reference)	Case 1	Case 2		
Technology Combinations					
CO ₂ Removal	Selexol	Metal Membrane			
Sulfur	Selexol		WGCU		

Metal Membrane

Metal Membrane & WGCU

Technology Analysis Plan

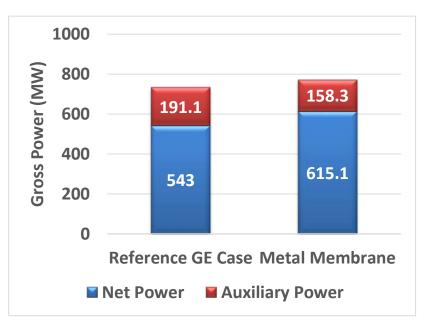
Jul.

NETL

Design Basis: Key assumptions		Key assumptions			
 Programmatic goal or targets Note what scale current technology is at and relate to experimental data. 	Hydrogen Membrane Parameter	Value	Implication if target not achieved	Potential of not achieving target	
 how reasonable assumption are contingency 	Permeance (lb- mole/ft ² -hr-psi ^{1/2})	0.14	Lower flux = increased membrane surface area, higher costs	High	
 Purposed sensitivity studies Membrane permeance (flux) 	Permeance degradation	10-20%	Potentially lower service life	Moderate	
 Membrane service life 	Service life (years)	3	Greater replacement rate, increased O&M	High	
 Capital cost of the precious metal membrane 	Hydrogen recovery (%)	90	Increased fuel loss and lower efficiency	Moderate	
Expected deliverables	Hydrogen selectivity (%)	100	Impure fuel to the turbine	Low	
 Presentation and report outlining 	Effectiveness factor	0.85	Increased membrane area	Low	
 results Net power generation and efficiency 	Bare erected cost (\$/ft ²)	800	Increased capital cost	Moderate	
 TPC and COE Sensitivity results 	Replacement cost (\$/ft ²)	400	Increased O&M cost	Moderate	
Jensitivity results					

5

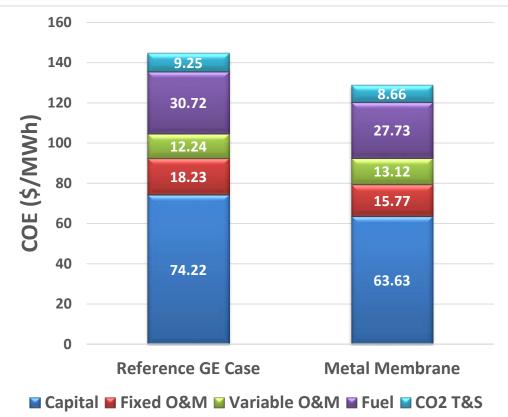
Performance Model


- 1. ASPEN Plus model for reference case
- 2. Proposed integration plan carried out to implement membrane
- 3. WGCU train was integrated into model
- High level plant wide results shown here
- Report should have significantly greater detail

Parameter	Reference GE Case	Precious Metal Membrane Case
Turbine Power (MWe)	464.0	464.0
Fuel Gas Expander (MWe)	7.0	N/A
Steam Turbine Power (MWe)	264.0	309.4
Gross Power Produced (MWe)	734.0	773.4
Coal Handling	0.5	0.5
Coal Milling	2.3	2.3
Recycle Slurry Pump	0.2	0.3
Slag Handling	1.2	1.2
Air Separation Unit Auxiliaries	1.0	1.0
ASU Main Air Compressor	67.3	66.4
Oxygen Compressor	10.6	10.7
Nitrogen Compressor	35.6	30.7
CO ₂ Compressor	31.2	17.3
Regeneration Air Compressor	N/A	4.8
Tail Gas Recycle Blower	1.8	0.2
WSA Air Blower	N/A	4.3
Cooling Tower Fans	2.4	2.0
Feedwater Pumps	4.2	5.7
Condensate Pumps	0.3	0.3
Circulating Water Pumps	4.6	3.9
Selexol Unit Auxiliaries	19.2	N/A
Gas Turbine Auxiliaries	1.0	1.0
Steam Turbine Auxiliaries	0.1	0.1
Claus Plant Auxiliaries	0.3	N/A
Miscellaneous Balance-of-Plant	3.0	3.0
Transformer Losses	2.9	2.8
Auxiliary Power Use (MWe)	191.0	158.3
Net Power (MWe)	543.0	615.1
As-Received Coal Feed (lb/hr)	487,005	497,708
Net Heat Rate (Btu/kW-hr)	10,459	9,439
Net Plant Efficiency (% HHV)	32.6	36.2
Net CO ₂ Emissions (lb/kW-hr _{net})	0.206	0.102
Simple Cycle Efficiency (%)	42.4	41.1
Steam Cycle Efficiency (%)	42.4	39.3

Performance Model Results (Example)

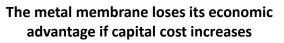
- No fuel gas expander in this case
- Steam turbine power increases by 48 MW by eliminating the Selexol and SWS reboilers. Syngas moisture is condensed, which contributes to steam turbine power
- Auxiliary power decreases by 30 MW
 - N₂ compressor load decreases by 5 MW from reduced fuel valve pressure drop
 - CO₂ pressures from auto-refrigeration are at greater pressure than from Selexol, decreasing CO₂ compressor load by 14 MW
 - 2nd generation technology differences further reduce auxiliary power load by 10 MW
- Plant efficiency increases by 3.5 percentage points, from 32.6% to 36.1%

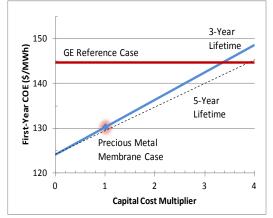


Cost Model Results

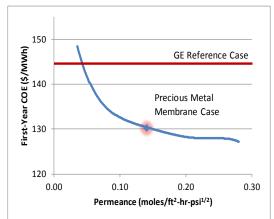
COE Comparison

- Basis: Membrane replacement is based on 3-year service life and cost of \$400/ft²
- Capital cost and fixed O&M cost are 13%lower
- 8% increase in variable O&M cost
 - dominated by membrane replacement cost
 - Trona and ZnO chemical
- 10% decrease in fuel cost reflects increase in net power generation
- Overall, COE decreases from \$135/MWh to \$120/MWh (w/o T&S) in the precious metal membrane case. Primary factors contributing to the decrease are:
 - Increased net power generation
 - reduced CO₂ compressor cost


Sensitivity Analyses


Sensitivity to Capital Cost and Service Life

- Both capital cost and membrane replacement cost are multiplied by the cost factor
- If the cost of the membrane exceeds 315% of its design basis cost, this technology loses its economic advantage over the low-cost GE reference case
- If service life increases to 5 years, the precious metal membrane increases its economic advantage


Sensitivity to Permeance

- Membrane surface area is strongly tied to permeance
- Membrane cost (and COE) increase sharply as permeance falls below 0.10 moles/ft²-hr-psi^{1/2}
- Precious metal membrane case does not lose its economic advantage until permeance drops below 0.04 moles/ft²-hr-psi^{1/2}

Membrane cost and COE are highly sensitive to permeance

Summary

- Condensation of moisture from non-permeate stream contributes to steam turbine power generation. Increase in dilution N₂ for fuel decreases the reduction in N₂ compressor load
- Fuel valve pressure drop of 50 psi reduces N₂ compressor load
- 72 MW increase in net power generation results in 3.5 percentage point increase in efficiency
- Due to high cost of membrane, decrease in gas cleanup cost account is minor
- 13% reduction in TPC is due to 2nd generation technologies and increase in net power generation
- COE decreases by 10% relative to the low-cost GE reference case
- High cost of membrane material makes COE very sensitive to capital equipment cost, service life, and permeance

