

Session: Post-Combustion Solvent-Based Capture

Development of Mixed-Salt Technology for CO₂ Capture from Coal Power Plants

Indira S. Jayaweera Sr. Staff Scientist and CO₂ Program Leader SRI International

June 23-June 26, 2015 • Sheraton Station Square Pittsburgh, Pennsylvania

Technology Background

Our Early Experience in Solvent-BasedTechnology Development from Proof-of-Concept to Pilot-Scale

Ammonia technology development started in 2004

EPRI, NEXANT STATOIL & ALSTOM

SRI work with multiple clients!

Post-Combustion CO₂ Capture

Small Bench-Scale

Large Bench-Scale

Pilot-Scale (0.25 MWth) (For ALSTOM)

Mixed-Salt Process Details

Key benefits:

- Reduced ammonia emissions
- Enhanced efficiency
- Reduced reboiler duty
- Reduced CO₂ compression energy

A SIGNIFICANT PARASITIC POWER REDUCTION COMPARED TO MEA !

How it works:

Selected composition of potassium carbonate and ammonium salts

Overall heat of reaction 35 to 60 kJ/mol (tunable)

Absorber operation at 20 - 40° C at 1 atm with 30-40 wt.% mixture of salts Regenerator operation at 70 - 180° C at 10-20 atm

• Produce high-pressure CO₂ stream

High CO₂ cycling capacity No Solids

CO₂ Lean

CO₂ Rich

$$K_2CO_3 - NH_3 - xCO_2 - H_2O$$
 system $\leftrightarrow K_2CO_3 - NH_3 - yCO_2 - H_2O$ system

Published Data Showing Favorable Kinetics for CO₂ Absorption in Ammonia Solutions

Comparison of CO₂ absorption rates for MEA and ammonia

Sources:

Dave et al., (2009). Energy Procedia 1(1): 949-954 Puxty et al., (2010). Chemical Engineering Science 65: 915-922 CSIRO Report (2012). EP116217

Absorber side: Enhanced kinetics

Pseudo first-order rate constants for CO₂ absorption in NH₃, MEA, and MDEA

Solvent	$k_{app}/10^{3} \text{ s}^{-1}$				
NH ₃ at 5°C	0.3				
NH ₃ at 10°C	0.7				
NH ₃ at 20°C	1.4				
NH₃ at 25°C	2.1				
MEA at 25°C	6				
MDEA at 25°C	0.58				
Concentration = 1.0 kmol m^{-3}					

Source:

Derks and Versteeg (2009). Energy Procedia 1: 1139-1146

Mixed-Salt has a Low Energy Requirement for CO₂ Stripping

Estimated regenerator heat requirement for mixed-salt system with 0.2 to 0.6 cyclic CO_2 loading. Comparison with neat K_2CO_3 and MEA is shown.

Sources: MEA data: CSIRO report (2012), EP116217 K_2CO_3 data: GHGT-11; Schoon and Van Straelen (2011), TCCS-6 Mixed-salt data; SRI modeling

Mixed-salt process requires minimal energy for water stripping

Regenerator side: Reduced water evaporation

Mixed-Salt Requires Less Energy for CO₂ Compression

Electricity output penalty of compression to 100 bar as a function of desorber pressure

Source: Luquiaud and Gibbins., Chem Eng Res Des (2011)

CO₂ Compression: High-pressure CO₂ release

Mixed-Salt Process Flow Diagram

DOE Project Overview (Large-Bench Scale Testing)

Project Goals

Budget Period 1:

Demonstrate the absorber and regenerator processes individually with high efficiency, low NH₃ emissions, and reduced water use compared to state-of-the-art ammonia-based technologies

Budget Period 2:

- Demonstrate the high-pressure regeneration and integration of the absorber and the regenerator
- Demonstrate the complete CO_2 capture system, optimize system operation, and collect data to perform the detailed techno-economic analysis of CO2-capture process integration to a full-scale power plan
- Conduct EH&S analysis of the process

The overall project objective is to demonstrate that mixed-salt technology can capture CO₂ at 90% efficiency and regenerate (95% CO₂ purity) at a cost of \leq \$40/tonne to meet the DOE program goals.

Project Budget

	Budget Period 1	Budget Period 2	Total				
	10/1/13 - 12/30/14	1/1/15 - 3/31/16	10/1/13-3/31/16				
Total Project Cost	\$1,019,650	\$1,278,975	\$2,298,626				
DOE Share	\$819,534	\$1,018,474	\$1,838,009				
Cost Share	\$200,116	\$260,501	\$460,617				

Cost share by SRI, OLI Systems, POLIMI, Aqueous Solutions Aps, Stanford University, and IHI Corporation

Project Manager: Mr. Steven Mascaro, NETL

Prime Contractor: SRI International

US Partners: OLI Systems, Stanford University, Dr. Eli Gal

International Partners: Dr. Kaj Thomsen, POLIMI, IHI Corporation

Project Tasks

				2014			-		20	15	2016			
Task	Start Date	End Date	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Mixed-Salt BP1 and BP2	10/1/2013	3/31/2016]	
Task 1.0 - Project Management and Planning	10/1/2013	3/31/2016												
Task 2-0: Individual Absorber and Regenerator														
Testing in Semi-Continuous mode	10/1/2013	11/30/2014												
Subtask 2.1 - Test Systems Design and Installation	10/1/2013	4/28/2014												<u> </u>
Subtask 2.2 - Test Plans	2/1/2013	2/30/2014												
Subtask 2.3 - Absorber Tests	4/30/2014	11/30/2014												
Subtask 2.4 - Regenerator Tests	7/1/2014	11/3/2014												
Subtask 2.5 - Bench-Scale Test Data Analysis	2/28/2014	11/30/2014												
Task 3.0 - Preliminary Process Modeling and														
Techno-Economic Analysis	3/1/2014	12/15/2014												
Subtask 3.1 - Process Modeling	3/1/2014	11/30/2014												
Subtask 3.2 - Preliminary Economic Analysis	8/1/2014	12/15/2014												
Task 4.0 - Budget Period 2 Continuation														
Application	9/15/2014	9/30/2014												
Continuation Report Submission	9/15/2014	9/30/2014												
Task 5.0 - Bench-Scale Integrated System Testing	1/15/2015	3/31/2016												
Subtask 5.1 - Design of the Bench-Scale Integrated														
Test System	1/15/2015	3/31/2015												
Subtask 5.2 - Installation of the Bench-Scale	1/15/2015	2/21/2015												
Subtack 5.2 Reach Scale Test Blanc	1/15/2015	2/15/2015												
Subtask 5.5 - Deficit-Scale Tests and Data Applyain	1/15/2015	2/15/2015												
Task 6 0 - Process Modeling and Techno-Economic	4/1/2015	3/31/2016								i – –	1	1		
Analysis	5/1/2015	3/31/2016										Γ		
Subtask 6.1 - Process Modeling	5/1/2015	3/1/2016												
Subtask 6.2-Techno-Economic Analysis	8/1/2015	3/30/2016												
Subtask 6.3- Technology EH&S Risk Assesment	9/1/2015	3/30/2016												
Final Report Submission	4/30/2016	5/30/2016												

Project is on time and on schedule

Work Performed in BP1

Schematic and Photograph of the Absorber System

0.25 to 1 t-CO₂/day capacity

Bench-Scale Absorber Performance

The observed overall rates for CO₂ absorption are on the same order as those of MEA-based systems and about 5-7x higher than chilled ammonia systems

Process Ammonia Management

Test Data

NH₃ vapor pressure at the Absorber 1 exit under various CO₂-loading conditions

NH₃ vapor pressure at the Absorber 1 and 2 exits under various CO₂-loading conditions

Regeneration Operation Modes

17

Regenerator Performance

Test Data

Variation of attainable CO₂-lean loading level with temperature for rich loadings of 0.40 to 0.50 at 10-12 bar

Comparison of measured and modeled attainable CO₂-lean loading at 100 to 150 °C

Process was demonstrated with cyclic loading from 0.2 to (lean) to 0.5 (rich) at 150° C

The produced lean loading well exceeds that required for > 90% CO₂ capture from flue gas streams

Modeling Results: Preliminary Net Power Efficiency

- Software package was developed for thermodynamic modeling of mixed-salt system
- Process layout with two regenerator options were modeled, regenerator energy requirement was in the range 1.8 to 2.2 MJ/kg-CO₂, lowest energy option was chosen for BP2 regenerator design

Progress in BP2

Ongoing and Planned Activities in BP2

Energy and Environment Center

- Absorber modification (completed and continuous operation in progress)
- Novel regenerator design and fabrication (80% complete)
- Integrated system operation (to begin in August)
- Complete system modeling in ASPEN (complete)
- Complete system modeling with rate-based approach (continuing)
- Process technoeconomic analysis (TEA) (to start in August 2015)
- Process EH&S analysis (to start in September 2015)

Simplified PFD of the Integrated System

- 1. System is currently in operation with buffer tanks for lean and rich solution storage
- 2. Continuous operation of the absorber system was smooth and the observed results were as expected based on the BP1 work

System Testing in Continuous Mode

90% CO₂ capture efficiency with 0.19 to 0.40 cyclic CO₂ loading in Absorber 1 Gas flow rate = 15 acfm

Process Modeling: SRI (ASPEN) and OLI (ESP) Cyclic Loading = 0.18 to 0.58Reboiler Duty ~ 1.8 to 1.9 MJ/kg-CO₂ Ammonia Emission < 10 ppm

Modeling and Test Data

Comparison of observed and modeled temperature profiles for Absorber 1

Mixed-Salt Technology Summary

Process Summary

- Uses inexpensive, industrially available material (potassium and ammonium salts)
- Requires no feedstream polishing
- Does not generate hazardous waste
- Has the potential for easy permitting in many localities
- Uses known process engineering

Demonstrated Benefits

- Enhanced CO₂ capture efficiency
- High CO₂-loading capacity
- High-pressure release of CO₂

Expected Benefits

- Reduced energy consumption compared to MEA
- Reduced auxiliary electricity loads compared to the chilled ammonia process
- Possible flexible carbon capture operation

Plans for Future Testing and Commercialization

Bench-scale Technology Development Timeline

Scale-up Plan of Mixed-Salt Process for CO₂ Capture from Coal Power Plants

Current Project Location

SRI's site in Menlo Park, CA (~ 65 acres) SRI also has a test site near Livermore, CA (480 acres)

NETL (DOE)

• Mr. Steve Mascaro, Ms. Lynn Bricket, and other NETL staff members

SRI Team

 Dr. Indira Jayaweera, Dr. Palitha Jayaweera, Dr. Jianer Bao, Ms. Regina Elmore, Dr. Srinivas Bhamidi, Mr. Bill Olsen, Dr. Marcy Berding, Dr. Chris Lantman, and Ms. Barbara Heydorn

Collaborators

 OLI Systems (Dr. Prodip Kondu and Dr. Andre Anderko), POLIMI (Dr. Gianluca Valenti and others), Stanford University (Dr. Adam Brant and Mr. Charles Kang), Dr. Eli Gal, and Dr. Kaj Thomsen

Industrial Partner

• IHI Corporation (Mr. Shiko Nakamura, Mr. Okuno Shinya, Dr. Kubota Nabuhiko, Mr. Yuichi Nishiyama, and others)

Disclaimer

This presentation includes an account of work sponsored by an agency of the United States Government, Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Contact:

Dr. Indira Jayaweera

Indira.jayaweera@sri.com 1-650-859-4042

Thank You

Headquarters: Silicon Valley

SRI International 333 Ravenswood Avenue Menlo Park, CA 94025-3493 650.859.2000

Washington, D.C.

SRI International 1100 Wilson Blvd., Suite 2800 Arlington, VA 22209-3915 703.524.2053

Princeton, New Jersey

SRI International Sarnoff 201 Washington Road Princeton, NJ 08540 609.734.2553

Additional U.S. and international locations

www.sri.com