

Session: Pre-Combustion Capture Projects

Development of Pre-Combustion CO₂ Capture Process Using High-Temperature PBI Hollow-Fiber Membranes

Indira S. Jayaweera

Sr. Staff Scientist and CO₂ Program Leader SRI International

June 23-June 26, 2015 • Sheraton Station Square Pittsburgh, Pennsylvania

Project Overview and Technology Background

Why the High-Temperature Membrane Separation of CO₂?

Characteristics of PBI Membranes

- PBI has attractive combination of throughput and degree of separation
- Thermally stable up to ~ 300°C and sulfur tolerant
- Tested for 1000 hr at 225°C by SRI

Advantages of Membrane-Based Separation

- No need to cool syngas
- Reduced CO₂ compression costs
- Emission free, i.e., no solvents
- Decreased capital costs
- Low maintenance

Project Team

SRI

PBI Membrane Fabrication Research

Membrane Testing

PBI Performance Products, Inc.

PBI Manufacturer

Generon

Membrane Fabrication Scale-up

Module Fabrication

Enerfex

Membrane System Modeling

Energy Commercialization

Commercialization Analysis

NCCC

Gasifier Facility Test Site

EPRI

Electric Power Industry Perspective

NETL

Funding and technology oversight

- Cooperative agreement grant with U.S. DOE-NETL
- Period of Performance:
 - -Budget Period 1: 4-30-2014 through 10-31-2015
 - Budget Period 2: 11-01-2015 through 01-31-2017
- Project Startup Meeting: 06-9-2014
- Funding:
 - -U.S.: Department of Energy: \$2.25 million
 - Cost share: \$0.56 million
 - Total: \$2.81 million
- NETL Project Manager:
 - -Ms. Elaine Everitt

Objectives

Program Objective:

To develop polybenzimidazole (PBI) membrane-based H_2/CO_2 separation technology for Integrated Gasification Combined Cycle (IGCC) power plants that shows significant progress towards meeting the overall DOE Carbon Capture Program performance goal of 90% CO_2 capture rate at a cost of \$40/tonne of CO_2 captured by 2025.

Project Objectives:

Obtain sufficient *bench-scale data* for high-temperature PBI polymer membrane separation of pre-combustion syngas to H_2 -rich and CO_2 rich components. Utilize the data to evaluate the technical and economic viability of PBI-based membrane separation system to achieve NETL's Capture Program Performance Goals.

Task #	BP	Task	Status	Comments
1	1 & 2	Project management	On-Going	On-track
2	1	 Advanced development of asymmetric hollow fiber spinning Spinning defect-minimized fibers at km lengths Assembling of multi-fiber modules 1-in, 2-in, 4-in modules Installation of sub-scale fiber module test unit in laboratory Conduct laboratory tests to generate parametric performance test database Modeling of membrane performance Technology transfer to initiate industrial scale fiber spinning Design modification of the 50-kW_{th} skid design to house commercial membrane modules 	On-Going	On-track
3	2	Modification of the 50-kW $_{\rm th}$ test unit and installation at NCCC for the field tests		
4	2	Test the skid in a field setting using 50-lb/hr syngas stream from the gasifier at the NCCC and measure membrane performance		
5&6	2	 Process technoeconomic analysis (TEA) for ~550 MWe Plant; Environmental health and safety (EH&S) analysis 		
7	2	Decommission the system		

Critical Challenge:

Adapting spinning procedures used for fabricating standard polymeric hollow-fiber membranes to this high-temperature polymer

Required membrane architecture for gas separation

- Thin dense layer for gas separation
- Porous support for structural strength to stand high pressures

Composite membrane

- Membrane dense layer and porous layer are two different materials (e.g., polymer on porous metal)
 - Benefits
 - Ideal for proof of concept
 - Limitations
 - High cost of materials
 - Large footprint
 - Limited permeation

Dense active layer Porous metal support

Asymmetric integral structure

- Fiber is made of one material
 - Benefits
 - Low cost
 - Small footprint
 - Easy system scale up
 - Challenges
 - Longer fiber-development time

Tube bore

Fibers Developed Under Previous DOE Program

- Development of PBI polymer membrane to replace the original concept that used the PBI-coated porous stainless steel tubes.
- Development of new PBI formulation, installation of a spinning line, and defect free fiber spinning with ~1 μm dense layer (process patent pending).

- Membrane stability over 1000 hr was demonstrated.
- H_2/CO_2 selectivities and their permanence data established for 1-µm dense layer.

A significant achievement in fiber development was made under DE-FC26-07NE43090

Progress and Current Status

Fiber Spinning

Installation of the second spinning line ~ 1 km/day capacity

Original Spinning System

Second Spinning System

kg

yields

Main Focus: Quality Control

Fiber Spinning

Installation of the second spinning line ~ 1 km/day capacity

Scratch on the fiber surface showing the dense layer and the open porous support structure underneath

Second Spinning System

Main Focus: Quality Control

High-Magnification Pictures of New Fiber Cross Sections

Energy and Environment Cent

- We have developed protocols for spinning < 0.3 µm micron dense layer hollow fiber membranes with membrane OD 450 to 650 µm. Pictures shown are for ~ 0.1 µm fibers with ~ 600 µm OD.
- Fabrication of hollow-fiber membrane with a very thin dense layer (< 0.3 µm) in kilometer lengths with very good reproducibility
- Testing of over 30 1-in fiber bundles for fiber spinning optimization
- Spinning (>30 km) and shipping of ~ 10 km of fiber to Generon to fabricating a ¹³
 2-in module for initial testing of the prototype skid

Fiber Performance Testing

- > Single gases tested: CO_2 , H_2 , CO and N_2
- Sas mixtures tested: CO_2/H_2 , $CO_2/H_2/N_2$, $CO_2/H_2/CO$ and $CO_2/H_2/CO/N_2$
- > Parameters varied: T, ΔP , composition, stage cut

Gas Permeation Results from Single Gas Testing: Effect of Temperature and Pressurement Cert

Measured permeance of H_2 and CO_2 through a <0.3 µm dense layer fiber bundle as a function of temperature and differential pressure.

Single-Gas Testing: Effect of Temperature and Pressure

Mixed-Gas Testing : Effect of CO₂ concentration

 H_2 recovery and CO₂ capture at varying CO₂/ H_2 compositions at 225°C and at a ΔP of 200 psi (H_2 /CO₂ selectivity = ~40)

Observation: >95% H₂ recovery is possible without a cascade

Mixed-Gas Testing: Effect of Selectivity

 H_2 recovery and CO_2 capture at 225°C and at a ΔP value of 200 psi (stage cut > 0.5)

Observation:

It is challenging to capture >90% CO_2 at high H₂ recoveries (>95%) with a single element

Fabrication of Large Modules: 2-in Module

Protoype 2-in module

SRI spun fibers (~ 5 km shown)

- A protocol was developed for potting PBI HFM without dry spots
- The method was tested using SRI fibers (1 m²)
- SRI plan to evaluate the performance with H₂O/N₂ mixtures

Actual 2-in module

Key Findings and Accomplishments

Accomplishments in fiber spinning at SRI have revealed:

- Ways to produce defect-free fibers
- Best use of analytical techniques to determine the trace levels of solvent left in the fibers
- New coagulant for industrial setting

Accomplishments in fiber spinning at Generon:

- Fabricated 150-200 micron OD, 75-100 micron ID, and macro-void free fibers
 - Currently improving the fiber porosity

Accomplishments in fiber module fabrication at Generon:

- Fabricated a 2-in module using SRI fibers
- Completed 4-in module design

Accomplishments in fiber spinning at PBI Performance:

Produced new formulations for SRI specification in support of Generon and SRI fiber spinning

Lesson learned: Implementation of the spinning technology in an industrial setting requires considerable time.

20

Key Findings and Accomplishments (Continued)

- > PBI HFMs can be produced at km lengths with minimum defects.
- > Upper limit for H_2/CO_2 selectivity is ~ 40.
- Practical H₂/CO₂ selectivity for laboratory-scale spun fibers is 20-25 with shell-side dense layer
- Membrane test systems reach steady-state operation very rapidly (within few minutes)
- \succ 50 kW_{th} skid design completed and fabrication contracted
 - Fabrication will be completed in BP2

SRI PBI HFM: 1/4-in Mandrel Test

Transition from smaller-module to larger-module testing

BP1 / BP2

		Fiber Supplier/				
Module Size	Budget Period	Module Supplier ^{##}	Test Site			
2-in x 12-in	BP1 and BP2	SRI/Generon	SRI			
4-in x 20-in [#]	BP2	SRI/Generon	NCCC (50 MWth)			
6-in x 40-in	BP2	Generon/Generon	NCCC (50 MWth)			
#: Module design in BP1, Skid design and fabrication in BP1, Skid update in BP2						
PBI Dope Supplier: PB						

Test unit (50 kW_{th}) installation and commissioning at NCCC

- Process safety review and Hazard/Operability (HazOp) Study
- Installation of the test unit at NCCC
- Short term and longer duration testing (225 °C, ~ 200 psi)

Membrane Performance Simulation for Fieurerationa Testing

Future Work (continued)

Process design and engineering study:

- Determine how the high temperature hollow-fiber PBI membrane process concept would be incorporated into a nominal 550-MWe gasification-based power plant with CCUS.
- Use an IGCC process based on a GE-oxygen-blown gasifier and selexol-based CO₂ removal as the base case.
- Perform the work in collaboration with EPRI

The preliminary estimations show that the CO_2 capture cost for combined process would be ~ \$39 /tonne of CO_2 captured compared to \$52/tonne of CO_2 captured for IGCC with the baseline technology, Selexol.

- Elaine Everitt (NETL)
- SRI Team
- Richard Callahan (Enerfex, Inc.)
- Kevin O'Brien (Energy Commercialization, LLC)
- Greg Copeland (PBI Performance Products)
- Mike Gruende (PBI Performance Products)
- John Jensvold and his team (Generon IGS)

Disclaimer

This presentation includes an account of work sponsored by an agency of the United States Government, Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Technical Contact: Dr. Indira Jayaweera Sr. Staff Scientist CO₂ Program Leader Indira.jayaweera@sri.com 1-650-859-4042

Thank You

Headquarters: Silicon Valley

SRI International 333 Ravenswood Avenue Menlo Park, CA 94025-3493 650.859.2000

Washington, D.C.

SRI International 1100 Wilson Blvd., Suite 2800 Arlington, VA 22209-3915 703.524.2053

Princeton, New Jersey

SRI International Sarnoff 201 Washington Road Princeton, NJ 08540 609.734.2553

Additional U.S. and international locations

www.sri.com