

New Materials Development for Carbon Capture Applications

Hunaid Nulwala

Carbon Capture Group (NETL)

Assistant Research Professor

Carnegie Mellon

University June 2015

To boldly go where no one has gone before

- A future with no or little CO₂ emission
- Cheap and abundant
 electricity
- Reliable electricity

We explore new ideas

Project overview: Transformational technologies

- In-house NETL-ORD Carbon Capture FWP
- Project performance dates: 10/1/2014 9/30/2015.
- Total cost for transformation program \$1.065M
 - No cost share
- Project objectives: Evaluate new materials and characterize them to determine the potential for carbon capture.
- TR 2-3 level

BOLDLY GO WHERE NO ONE HAS GONE BEFORE IN 1-2 YEARS

What is the NETL-ORD role in transformation technology development?

And what is it not?

It's not:

- Basic science
- New synthetic methodologies
- Pilot-scale testing
- Commercialization
- It is:
 - Examination of novel classes of materials for capture
 - Exploration of innovative process configurations
 - Development of advanced screening approaches

Integrated technology development

Advanced solvents

Choline-based ILs

RFIL	viscosity cP	τ _g ∘C	Setaram CO ₂ uptake, mol CO ₂ / mol IL
$[NH_{2}(CH_{2})_{2}NMe_{2}(CH_{2})_{2}OH]Tf_{2}N \\ (\textbf{N2, O2})$	4530	-39.4	0.017
[NH ₂ (CH ₂) ₂ NMe ₂ (CH ₂) ₃ OH]Tf ₂ N (N2, O3)	1146	-44.6	not determined
$\label{eq:2.1} \begin{array}{l} [NH_2(CH_2)_3NMe_2(CH_2)_2OH]Tf_2N \\ (\textbf{N3, O2}) \end{array}$	1303	-49.6	not determined
[NH ₂ (CH ₂) ₃ NMe ₂ (CH ₂) ₃ OH]Tf ₂ N (N3, O3)	1424	-39.2	0.018
$\label{eq:normalized_states} \begin{split} & [NH_2(CH_2)_3NMe_2(CH_2)_5CH_3]Tf_2N \\ & (\textbf{N3, hex}) \end{split}$	1084	-46.8	0.018
[NH ₂ (CH ₂) ₄ NMe ₂ (CH ₂) ₂ OH]Tf ₂ N (N4. O2)	280	-66.6	0.028

- Focused on improve the CO₂ interactions.
- Intramolecular HB causes decrease in viscosity which is dictated by the spacers.
- Effect of anion and cation on CO₂ solubility was evaluated.

Advanced solvents

In the process of experimental verification

CO₂ catalyst for amine solvents

Thermodynamic aspects: 3) pK_a values of coordinated ligands

Reaction	Metal ion	water pK _a
H ₂ O + M ²⁺	none	14.0
	Ca ²⁺	13.4
	Mn ²⁺	11.1
	Cu ²⁺	10.7
	Zn ²⁺	10.0

Zn coordinated water is 10000 more acidic

The catalyst is inspired by the function of carbonic anhydrase. (Uky)

$$H_2O + CO_2 \longrightarrow HCO_3^- + H^+$$

Carbonic acid formation is 10⁷ faster in carbonic anhydrase

CO₂ catalyst for amine solvents

Condensed Phase Model

Zn-O Distance, Angstroms

- Collaborative work with University of Kentucky, Center for Applied Energy Research have developed catalysts that boost carbon capture in aqueous amine solutions.
- Developing fundamental understanding of these catalysis.
- Currently, Density Functional Theory Nudged Elastic Band calculations on a larger, condensed phase is being carried out.
- Via simulation clear evidence is seen of hydrogen bonded networks as well as a hydrophobic region inside the catalyst, reminiscent of carbonic anhydrase.

Energy efficient regeneration methodologies

Redox-driven Regeneration of Amines: Material Development

- Redox probe is able to bind protons in the reduced [R] form but NOT the oxidized form [O].
- Protons effectively pumped from Cathode to Anode.
- Lower potential than water splitting, no gaseous byproducts.
- pKa of [R] is critical!

Combination of innovative process and chemistry; voltage needs to be lower.

Energy efficient regeneration methodologies

Time

- Voltage needs to be lowered
- Current state of the art is
 0.5 V (needs to be lowered)
- Proof of concept completed
- Quantitative analysis is currently being performed.

NETL

Processing of materials

Innovative processing solutions

Polyamides (Nylon 6/6)

6 min after removing from heat increasing concentration of choline chloride

Process enables preparation of polymer dope for film casting

Innovative processing solutions

Cellulose Processing and modification

Provisional filed

Using our insight in ionic liquids

In-situ MOF growth in polymers

Zirconium MOF: UiO66

Formation of MOF thin films

New simple, surface-templating approach to fabricate pure MOF membranes that can be transferred to other surfaces

We have developed a novel templating technique to make sheets of MOF materials

Patent pending

Acknowledgements

- David Hopkinson (NETL)
- Fangyong Yan (CMU)
- Prof. Hyung Kim (CMU)
- Robert Thompson (NETL)
- Anne Marti (NETL/ORISE)
- Larry Hill (NETL/ORISE)
- John Watkins (NETL/ORISE)
- Jan Steckel (NETL)
- Wei Shi (NETL)
- David Luebke

