

Electrochemical Membranes for CO₂ Capture and Power Generation Hossein Ghezel-Ayagh

> 2015 NETL CO₂ Capture Technology Meeting June 23, 2015 Pittsburgh, PA

Ultra-Clean | Efficient | Reliable Power

DE-FE0007634 Project Outline

Overall Project Objectives:

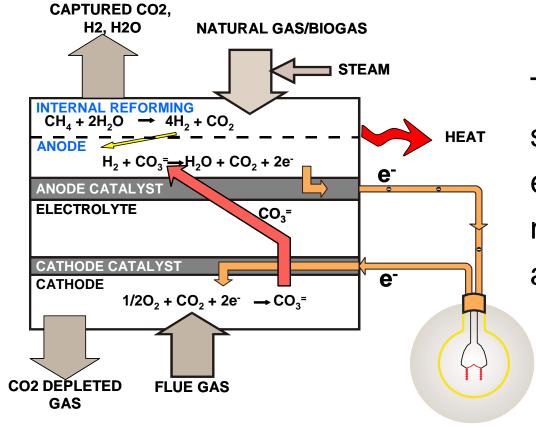
- □ Demonstrate ability of FCE's electrochemical membrane (ECM)-based system to separate ≥ 90% of CO₂ from a simulated PC flue-gas stream suitable for sequestration or beneficial use
- □ Demonstrate that ECM system is an economical alternative for postcombustion CO₂ capture in PC-based power plants, and that it meets DOE objectives for incremental cost of electricity (COE)

Project Participants:

FuelCell Energy, Inc. (FCE) FuelCell Energy Ultra-Clean, Efficient, Reliable Power	System design, TEA, Gap analysis, ECM fabrication, and bench-scale testing of an 11.7 m ² area ECM system for CO ₂ capture.				
Pacific Northwest National Laboratory (PNNL) Pacific Northwest NATIONAL LABORATORY	Test effects of flue gas contaminants on ECM.				
AECOM Technical Services (formerly URS Corporation)	Review ECM-based system design, equipment and plant costing, and flue gas clean-up system design.				

Project Tasks, Schedule and Funding

	2012				2013				2014				2015			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1 Project Management												l I	l I			
Task 2 Technical and Economic Feasibility Study (T&EFS)																
T&EFS Updates												 	 			
Task 3 Technology Gap Identification																
Task 3.1 Contaminant Evaluation																
Task 3.2 Membrane Testing																
Task 3.3 BOP Equipment Update).					
Task 4 EH&S Review																A)
Task 5 Bench-Scale Testing																,


Project Funding								
DOE Share	FCE Cost Share	Project Total						
\$3,034,106	\$758,527	\$3,792,633						

Project Milestones

Budget Period	Task	Milestone Description	Planned End Date	Actual End Date	Status
1	2.1	Demonstrate the potential of the ECM-based system to achieve 90% carbon capture from the Reference PC Plant, based on results of a system study	5/30/12	3/31/12	8
1	2.2	Demonstrate potential to achieve incremental COE of <35%	5/30/12	5/30/12	8
2	3.2	Verify that ECM CO ₂ flux can meet the target identified in the Technical and Economic Feasibility Study	7/31/13	12/31/12	8
2	3.2	Demonstrate >50% NO _x Destruction Capability of ECM	12/13/13	6/30/12	8
2	3.1	Verify that ECM contaminant tolerances can be met by cost-effective flue gas pretreatment technologies	12/23/13	9/30/13	Ø
3	5.4	Verify CO ₂ Flux at 100 cc/m ² /s	9/31/14	7/30/14	Ø
3	5.4	Complete 9 Months of Endurance testing with degradation in Carbon Capture Efficiency based on the value identified in the Technical and Economic Feasibility Study	6/19/15	5/31/15	8
3	5.4	Demonstrate 3 deep Thermal Cycles between ambient and operating temperatures with <2% Degradation in Carbon Capture Efficiency	8/16/15		

Electrochemical Membrane (ECM) Technology

The driving force for CO₂ separation is electrochemical potential, not pressure differential across the membrane

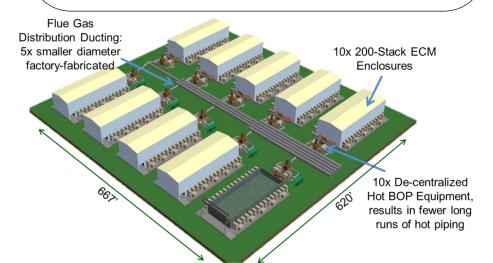
Net Results ⇒

- Simultaneous Power Production and CO₂ Separation from Flue Gas of an Existing Facility
- Excess Process Water Byproduct
- Complete Selectivity towards CO₂ as Compared to N₂

Solutions that Create Value

Modular and Scalable Global Solution

ECM Assembly



ECM Stack

Four-Stack Module

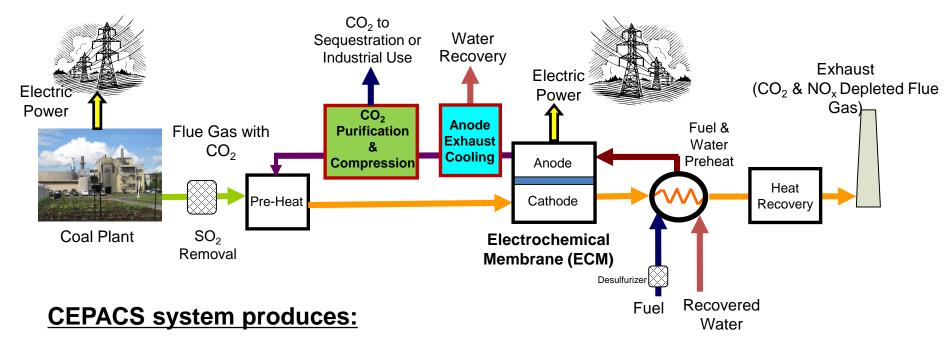
- Ease of scale-up and transport
- Suitable for incremental phased applications to almost any type of CO₂-emitting plant
- Proven technology based on FCE's commercial Direct FuelCell[®] for power generation applications

421MWe CEPACS Plant for >90% Carbon Capture from 550MWe PC Plant

MW-Class Module

2-Module plant

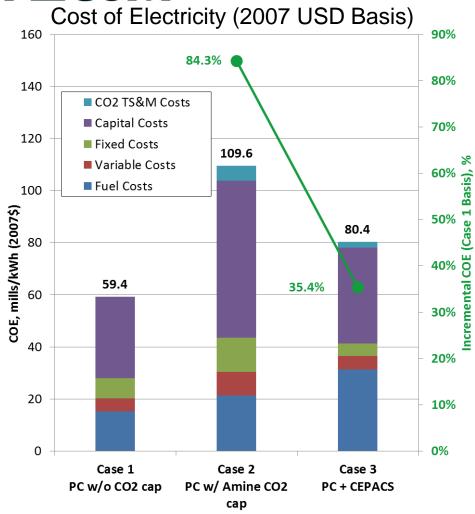
10-Module Plant

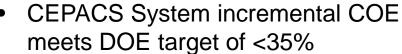


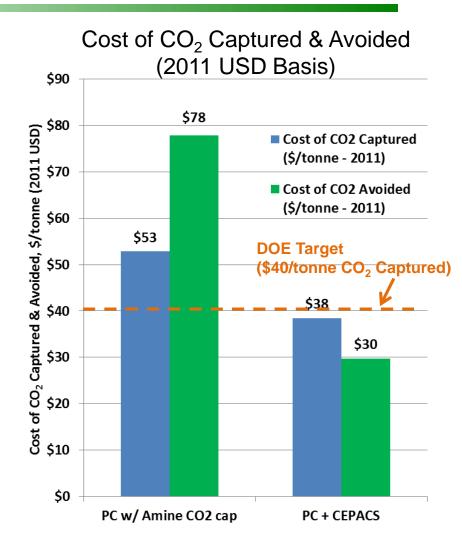
Techno-Economic Analysis

CEPACS System Simplified Block Flow Diagram

<u>Combined Electric Power and Carbon-dioxide Separation (CEPACS)</u> System Concept Implementation for 550 MW Reference PC Plant*


- Supercritical CO₂ (90% CO₂ capture from PC Plant)
- Excess Process Water
- Additional 421 MW of clean AC power @ 42.4% Efficiency (based on LHV NG)

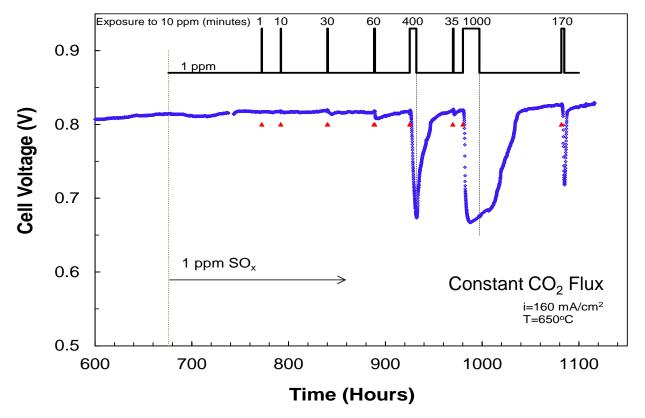

^{*} Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2, DOE/NETL-2010/1397, November 2010.



Techno-Economic Analysis Results

CEPACS System can meet DOE Target of <\$40/tonne CO₂ captured (2011 USD)

ECM Testing Results

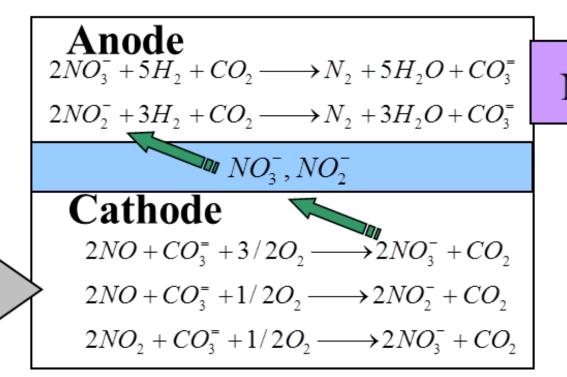

- ECM Tolerance to Flue Gas Contaminants
- Bench-scale (11.7m²) ECM System

ECM Flue Gas Contaminant Tolerance: SO₂

To simulate flue gas cleanup system upsets, ECM response to spikes of SO₂ concentrations was studied:

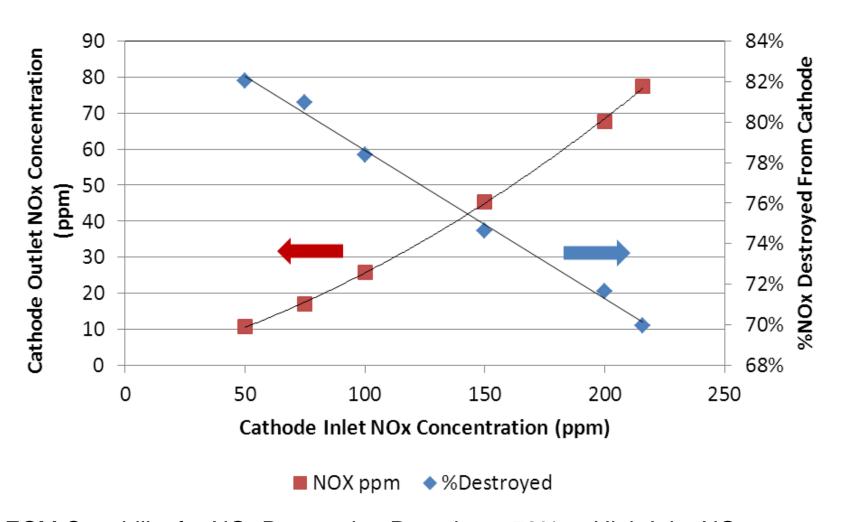
- ECM performance is stable using a polishing equipment which reduces upstream
 SO₂ concentration in the flue gas (cathode gas) to <1 ppm
- Performance loss was fully recoverable after exposing ECM to 10 ppm transients
 SO₂ of varying lengths with recovery time proportional to length of transient

ECM Flue Gas Contaminants Tolerance: Summary


Flue Gas Contaminant	Concentra Cathode In After Poli FGD, Estim AECC	let Gas shing ated by	Tested by PNNL,		Notes
SO ₂	0.18	ppmv	1	ppmv	Performance losses due to short-term SO_2 exposure up to 40ppm were fully reversible
Se	0.30	ppbv	10	ppbv	No apparent degradation over 860 hours.
Hg	0.08	ppbv	250	ppbv	Expected form is predominantly elemental Hg. No apparent degradation over 1100 hours.
нсі	12.7	ppbv	200	ppbv	No apparent degradation over 900 hours.

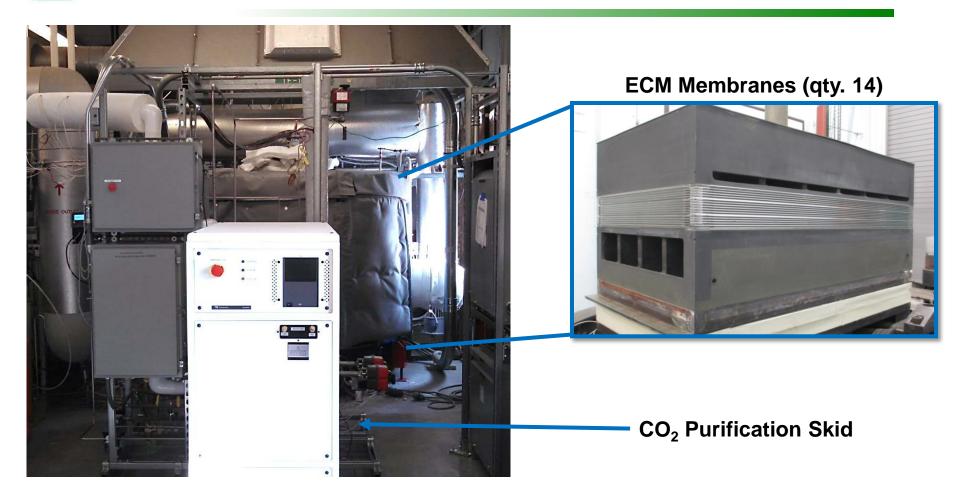
 Based on PNNL testing and AECOM performance estimates, a polishing wet-FGD scrubber is designed to sufficiently clean flue gas for ECM operation

 NO_{x}


ECM NO_x Removal Mechanism

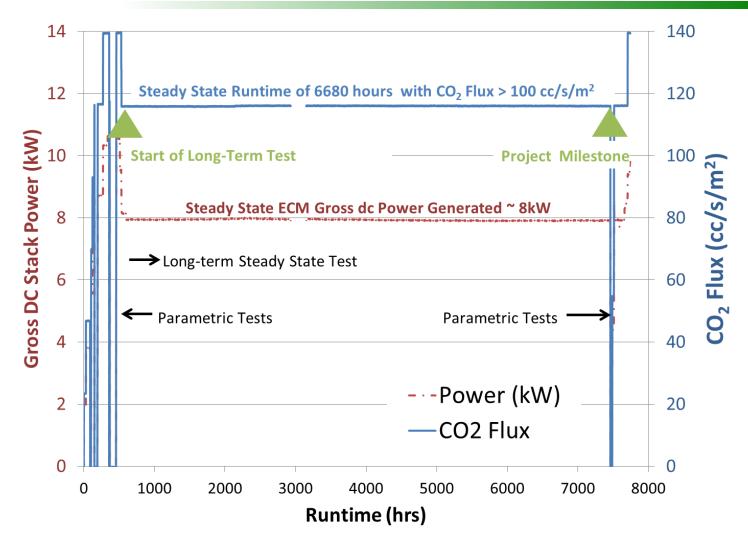
- Based on FCE's prior experience:
 - ECM materials are not expected to be degraded by NOx in flue gas
 - CEPACS system offers co-benefit of NOx reduction

Reaction Mechanism by which NOx is removed from the Flue Gas (cathode-side), transferred to the anode-side along with CO₂, and subsequently destroyed


ECM NO_x Removal Capabilities

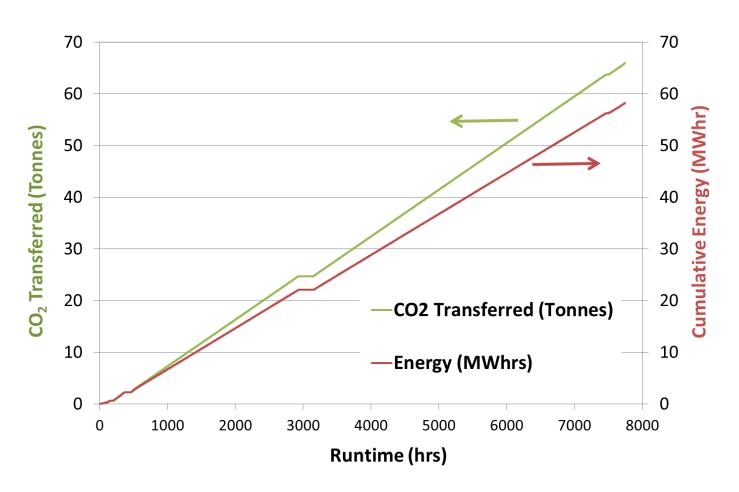
ECM Capability for NO_x Destruction Remains > 70% at High Inlet NO_x
 Concentration (200 ppm) During Carbon Capture under System Conditions

Bench-Scale Demonstration System



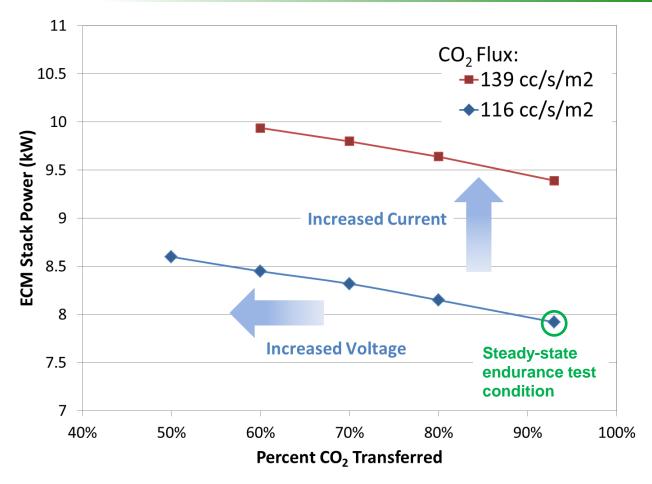
CEPACS Demonstration System:

- Designed for 100 tons/year liquid CO₂ product
- Capable of >10 kW peak power production



Bench-Scale Demonstration Results

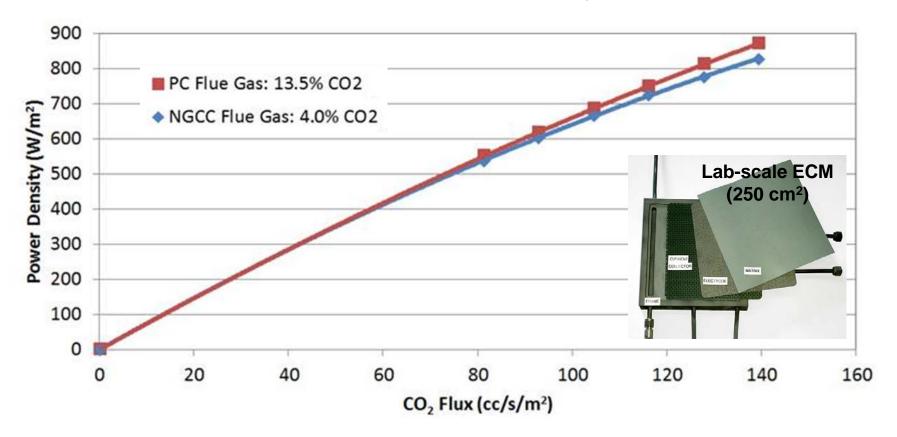
Bench-scale CEPACS test results verified CO₂ flux greater than 15% over targeted milestone value (>100 cc/s/m²) and stable operation for >9 months


Bench-Scale Demonstration Results

Bench-scale ECM separated 66 Tonnes CO₂ from simulated PC plant flue gas, generating 58 gross megawatt-hours of electricity.

Bench-Scale Demonstration Results: Parametric Testing

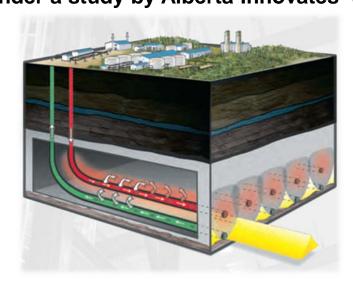
- ECM is capable of operating at higher CO₂ flux (>20% improvement)
 than baseline conditions, with proportional increase in power generation
- ECM power output (and efficiency) increases slightly as CO₂ capture % decreases



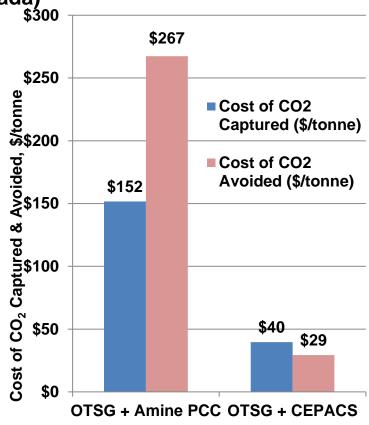
Other Applications

ECM Performance: Effect of Flue Gas Composition

ECM cell performance data for NGCC and PC plant flue gases at 93% carbon capture:



- High cell power densities at high CO₂ flux is observed in ECM tests
- ECM is capable of operating on flue gases with a wide range of CO₂ partial pressure
 - Pulverized coal-fueled boilers
 - Natural gas-fueled boilers
 - Natural gas turbine and combined cycle plants


Case Study: ECM for CO₂ Capture from SAGD Bitumen Extraction

Jacobs Consultancy developed an independent analysis* of a CEPACS system for 90% CO₂ capture applied to a 33,000 BOPD Steam Assisted Gravity Drainage (SAGD) facility under a study by Alberta Innovates (Alberta, Canada)

CEPACS system:

- Captures 90% of CO₂ from SAGD NG-fired Once Through Steam Generator (OTSG)
- Produces 62 MWe net, enough to cover all SAGD power requirements and export 48 MWe
- Reduces SAGD facility makeup water requirements by 44% (compared to without CCS)

Accomplishments and Summary

- ➤ The Technical and Economic Feasibility Study (T&EFS) of a CEPACS system to separate 90% of CO₂ from the flue gas of a Reference Plant (550 MW PC) has verified:
 - ECM increases output and efficiency compared to base plant without CO₂ capture
 - Incremental cost of electricity (COE) of 35% and cost of CO₂ captured of \$38/tonne CO₂ (2011 USD)
 - Excess water available for export
- ECM laboratory tests verified:
 - ECM is stable in the presence of S, Se, Cl, and Hg levels expected from a wet-FGD polisher
 - Capability to destroy 70-80% of NO_x from flue gases
 - Capability to separate CO₂ from flue gasses with low (<4%) CO₂ concentration

Fuel Cell Manufacturing Facility, Torrington, CT

- The Technology Gap analysis indicated that available commercial equipment can be used in CEPACS system with no R&D needed for BOP
- ECM is suitable for a wide range of carbon capture applications: Enhanced oil recovery, SAGD Oil Sands, coal and natural gas power plants, and industrial sites (cement factory & refineries)
- Completed steady state bench-scale tests of a bench-scale ECM stack achieving a stable CO₂ separation flux greater than the targeted 100 cc/s/m² while generating ~ 8 kW of gross power

ECM Carbon Capture from Coal Plants supported by DOE/NETL (Award Number: DE-FE0007634)

Guidance from NETL team: José Figueroa, Lynn Brickett, John Litynski, and others at NETL/DOE

