Pilot Testing of a Highly Efficient Pre-combustion Sorbent-based Carbon Capture System (Contract No. DE-FE-0013105)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Matt Cates Mike Bonnema Jim Dippo David Gribble Kerry Libberton

DOE/NETL Carbon Capture Meeting Pittsburgh, PA June 25, 2015

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Summary

- The objective is to develop a new sorbent-based pre-combustion capture technology for Integrated Gasification Combined Cycle (IGCC) power plants
- Demonstrate techno-economic viability of the new technology by:
 - 1) Evaluating technical feasibility in 0.1 MW_e slipstream tests
 - 2) Carrying out high fidelity process design and engineering analysis
- Major Project Tasks
 - Sorbent Manufacturing
 - Performance validation via long-term cycling tests
 - Reactor Design
 - CFD Analysis and PSA cycle optimization with adsorption modeling
 - Fabricate a Pilot-scale Prototype for Demonstration
 - Evaluations at various sites using coal-derived synthesis gas
 - Techno-economic analysis
 - High fidelity engineering analysis and process simulation

Project Partners

TDA's Approach

- TDA's uses a mesoporous carbon modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Comparable to that of Selexol
- Net energy loss in sorbent regeneration is similar to Selexol, but a much higher IGCC efficiency can be achieved due to high temperature CO₂ capture

- Pore size can be finely tuned in the 10 to 100 A range
- Mesopores eliminates diffusion limitations and rapid mass transfer, while enables high surface area

US Pat. Appl. 61787761, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent" US Pat. Appl. 61790193, Alptekin, Jayaraman, Copeland "Precombustion Carbon Dioxide Capture System Using a Regenerable Sorbent"

Research

Δ

Integration to the IGCC Power Plant

- Higher mass throughput to the gas turbine higher efficiency
- Lower GT temperature Reduced need for HP N₂ dilution and lower NO_X formation

Research

- Elimination of the heat exchangers needed for cooling and re-heating the gas
- Elimination of gray water treatment problem
- Potential for further efficiency improvements via integration with WGS

Operating Conditions

- CO₂ is recovered via combined pressure and concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants

Source: Honeywell/UOP

Early Slipstream Evaluations

National Carbon Capture Center, Wilsonville, AL

- 1st Test in November, 2011
- 2nd Test in April, 2012
- Pilot-scale air blown TRIG gasifier

Wabash River IGCC Plant, Terre Haute, IN

- Testing carried out in September 2012
- Largest single-train Gasifier (262 MW)
- Oxy-blown E-Gas[™] Gasifier
- Operates on petcoke

Early Slipstream Demonstration – Wabash River IGCC Plant

Sorbent achieved ~4%wt. CO₂ capacity and 96+% removal efficiency

Research

Prototype Performance

- Sorbent achieved maintained CO₂ capacity before and after the field tests
 - 2.6% wt. CO₂ at P_{CO2} = 38 psi
- At Wabash condition ($P_{CO2} = 140$ psi) sorbent achieved 4.1% wt. CO₂ capacity
- Next generation E-Gas gasifier is expected to operate at 750 psi (P_{CO2} = 240 psi) and capacity will exceed 10% wt. CO₂

Primary Objective

- 0.1 MW test in a world class IGCC plant to demonstrate full benefits of the technology
 - Testing with high pressure gas
- Demonstrate full operation scheme
 - 8 reactors and all accumulators
 - H₂ recovery/CO₂ purity
- Long-term performance
- Evaluations at various sites using coal-derived synthesis gas
 - Field Test #1 at NCCC Air blown gasification
 - Field Test #2 at Sinopec Yangzi Petro-chemical Plant, Nanjing, Jiangsu Province, China – Oxygen blown gasification

9 million t/a crude oil processing \$10 billion USD worth chemicals production

- 650 kt/a ethylene
- 1.4 million t/a aromatics
- 1.05 million t/a purified terephthalic acid
- 870 kt/a plastics
- 300 kt/a ethylene glycol
- 210 kt/a butadiene

Scope of Work – Budget Period #1

- Develop a Manufacturing Plan and Quality Assurance Plan
- Sorbent production
- Optimize the PSA cycle sequence
 - Multi-component adsorption model
- Design the sorbent reactors
 - Multi-component adsorption model
 - CFD simulations
- Complete detailed design of the 0.1 MW_e pilot-scale field test unit
 - Provide the design package to test sites (NCCC and Sinopec) for approval
- Provide the design package to DOE with detailed vendor quotes
- Update process design and simulation
 - Modifications in cycle sequence (gas flows, compression needs etc.)
 - Preliminary TEA following DOE guidelines

Manufacturing and QA Plans

Feeder

12

- Manufacturing Plan and QA Plans are finalized using high throughput pilot production equipment
- A continuous rotary kiln (12 lb/hr capacity) was used in preparing 20+ batches
- Good agreement batch-to-batch and with-in-batch

Adsorption Modeling Results

Sipps Isotherm Model Parameters $q_i = \frac{q_{s,i}(k_i p_i)^{s_i}}{1 + \sum (k_i p_i)^{s_i}}$ *T_{ref}* (K) θ_i Øi ω_i φ_i $S_{1,i}$ $S_{2,i}$ s_{ref,i} (1/Pa) (kJ/mol) (mol/kg) (kJ/mol) CO₂ $q_{s,i} = \omega_i e^{-\frac{\varphi_i}{RT}}$ $k_i = \theta_i e^{-\frac{\varphi_i}{RT}}$ 3.74 -7.87 26.9*10-09 -2.05 0.136 0.110 0.760 281 H₂ 6.6 0 0.70*10-09 -9.83 0 0 0.956 273 $s_i = s_{1,i} \operatorname{atan}(s_{2,i}(T - T_{ref})) + s_{ref,i}$

13

Research

CO₂ isotherm and breakthrough modeling have been completed

Process Cycle Optimization

DOE Target of 90% CO₂ Capture & 95% purity (dry basis) were achieved for 8bed configuration with multiple pressure equalizations and steam purge

	Sta	ge 1	St	tage 2			Sta	ge 3		Sta	ge 4	Sta	ge 5		Stag	je 6		Stag	ge 7	Sta	ge 8	
Time (mir	2	2	1	0.5	0.5	0.5	0.5	1	0.5	0.5	1		2	0.5		1.5	0.5	0.5	1	1	0.5	0.5
Bed 1	A	DS	HOLD	EQ1D	HOLD	Hold	EQ2D	Hold	EQ3D	Codep	BD	PU	RGE	EQ3R		HOLD	Hold	EQ2R	Hold	Hold	EQ1R	PRES
Bed 2	Hold	EQ1R PRESS		ADS		HC)LD	EQ1D HOLD	Hold	EQ2D	Hold	EQ3D CoDEF	D BD		PUR	IGE	EQ3R		HOLD	Hold EQ2R	Нс	bld
Bed 3	Hold EQ2R	Hold	Hold	EQ1R	PRESS		AI	DS	HC)LD	EQ1D HOLD	Hold EQ2D	Hold	EQ3D C	odep	BD		PUR	RGE	EQ3R	HOLD	
Bed 4		HOLD	Hold EQ2	R H	old	Но	old	EQ1R PRESS		A	DS	HOLD	EQ1D HOLD	Hold E	EQ2D	Hold	EQ3D	CoDEP	BD	PU	RGE	
Bed 5	PUF	RGE	EQ3R	HOLD)	Hold	EQ2R	Hold	Hc	old	EQ1R PRESS	А	DS	HOL	.D	<mark>eq1d</mark> hold	Hold	EQ2D	Hold	EQ3D CoDEF	В	D
Bed 6	EQ3D CoDEP	BD	Р	URGE		EQ3R		HOLD	Hold	EQ2R	Hold	Hold	EQ1R PRESS		AD)S	HO	LD	EQ1D HOLD	Hold EQ2D	Нс	bld
Bed 7	EQ2D	Hold	EQ3D CoDI	EP E	3D		PU	RGE	EQ3R		HOLD	Hold EQ2R	Hold	Hol	d	EQ1R PRESS		AC)S	HOLD	EQ1D	HOLD
Bed 8	HOLD	EQ1D HOLD	Hold EQ2	D H	old	EQ3D	CoDEP	BD		PU	RGE	EQ3R	HOLD	Hold [EQ2R	Hold	Ho	ld	EQ1R PRESS	А	DS	
																		1	4	FDA		_

CFD Modeling

2-D Concentration Distributions

3-D CFD Modeling for 0.1 MW_e Unit

- GTI extended the model predictions for the 8-bed 0.1 MW_e Pilot PSA Unit
- The temperature rise in the 8-bed system is expected to be within 35°C without any active heat management
 - No need for any additional heat managements in the PSA beds

Design of the Pilot Testing Unit

• Evaluation will focus on critical sub-systems (CO₂ purification is excluded)

18

0.1 MW Pilot Unit Design

Reactor Design and Optimization

Reactor Design and Optimization

Reactor Design and Optimization

Reactor Design Concepts

- Different reactor concepts have been evaluated
- Multiple train vertical reactors with internal flow distribution are selected for final design

	Vessels and Adsorbents	GEGasifier	
A A		Syngas flow, kmol/h	34,708
		Sorbent needed, kg	781,132
		Cycle time, min	8
		Ads. GHSV, h ⁻¹	1,115
		Total Beds	16
		Bed. Volume, L	116,240
		Bed Dimensions	
		Diameter, ft	14
		Length, ft	30.1
		Vessel wall thickness, in	5.0
	Valve Skid	L/D	2.30
		Particle size, in	1/8
I DA Design	Source: Honeywell/UOP	Bed Pressure drop insid	36

World-class PSA systems used in H₂ purification produces up to 400,000 m³/hr H₂ (compared to ~770,000 m³/hr syngas flow rate for the based case used in TEA) 23

Bed Pressure drop, psid

3.6

System Analysis Results

	E-Gas [™]	^M Gasifier	GE Gasifier			
	Case 1	Case 2	Case 3	Case 4		
CO ₂ Capture Technology	Cold Gas Cleanup Selexol [™]	Warm Gas Cleanup TDA's CO₂ Sorbent	Cold Gas Cleanup Selexol [™]	Warm Gas Cleanup TDA's CO ₂ Sorbent		
CO ₂ Capture, %	90.0	90.0	90.0	90.0		
Gross Power Generated, kWe	716,419	659,244	727,370	667,263		
Gas Turbine Power	464,000	418,911	464,000	411,132		
Steam Turbine Power	252,419	240,333	263,371	256,131		
Auxiliary Load, kWe	194,924	119,583	192,927	115,576		
Net Power, kWe	521,496	539,661	534,443	551,686		
Net Plant Efficiency, % HHV	31.20	33.70	32.00	34.30		
Coal Feed Rate, kg/h Raw Water Usage, GPM/MWe Total Plant Cost, \$/kWe	221,463 10.8 3,427	212,166 10.8 3,061	221,584 10.9 3,387	213,013 10.5 3,109		
COE without CO ₂ TS&M, \$/MWh COE with CO ₂ TS&M, \$/MWh	135.4 144.2	121.2 129.4	133.5 142.1	122.1 130.1		
Cost of CO ₂ Capture \$/tonne	51.98	38.08	47.89	36.34		

- IGCC plant with TDA's CO₂ capture system achieves higher efficiency (33.7%) than IGCC with Selexol[™] (31.2%)
- Cost of CO₂ capture is calculated as \$38.1 and \$36.3 per tonne for GE and E-Gas[™] gasifiers, respectively (24-27% reduction against Selexol[™])

Research

Acknowledgements

- The funding from DOE/NETL under Contract No. DE-FE-0007580 is greatly acknowledged
- Technical Monitor, Elaine Everitt, DOE/NETL
- Dr. Chuck Shistla and Andy Hill, GTI
- Dr. Arvind Rajendran, UOA
- Dr. Ashok Rao, UCI
- Dr. Liu Fangtao, Sinopec
- Dr. Francois Botha and Dr. Debalina Dasgupta, ICCI

