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Challenge: Accelerate Development/Scale Up
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Traditional time to deploy new technology in the power industry 
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For Accelerating Technology 
Development

National Labs Academia Industry

Rapidly synthesize 
optimized processes 
to identify promising 

concepts

Better understand 
internal behavior  to 

reduce time for 
troubleshooting

Quantify sources and 
effects of uncertainty to 

guide testing & reach 
larger scales faster

Stabilize the cost 
during commercial 

deployment
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• Develop new computational tools and models to enable industry to 
more rapidly develop and deploy new advanced energy 
technologies
– Base development on industry needs/constraints

• Demonstrate the capabilities of the CCSI Toolset on non-
proprietary case studies
– Examples of how new capabilities improve ability to develop 

capture technology

• Deploy the CCSI Toolset to industry
– Initial licensees

Goals & Objectives of CCSI
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• Organizational Meetings: March 2010 - October 2010
• Technical work initiated: Feb. 1, 2011
• Preliminary Release of CCSI Toolset: September 2012

– Initial licenses signed
• CCSI Year 3 starts Feb. 1, 2013

– Began solvent modeling/demonstration component
• 2013 Toolset Release: October 31, 2013

– Multiple tools and models released and being used by 
industry

• 2014 Toolset Release: October 31, 2014 
• Future

– Final IAB meeting: Sept. 23-24, 2015 (Reston, VA) 
– Final major release October/November 2015
– Commercial licensing late 2015 or early 2016

CCSI Timeline
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Advanced Computational Tools to Accelerate 
Carbon Capture Technology Development

Lab & Pilot Scale
Experiments & Data

Device Scale Models 
Validated 3-D, CFD

Process Systems
Design, Optimization & Control

Physical Properties
Kinetics

Thermodynamics
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• Process Systems Engineering & Crosscutting Tools
– FOQUS
– Optimization under uncertainty

• Solid Sorbents Models & Demonstration
– Process Systems Example
– Validated CFD Model Example

• Solvent System Model Example & Validation
– MEA example

• Supporting Pilot & Demonstration Scale Capture

Outline
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• FOQUS – Turbine – SimSinter
– Simulation-Based Optimization

• Simultaneous Heat Integration
– Quantification of Uncertainty (UQ)
– Optimization under Uncertainty
– ALAMO

• Automatic Learning of Algebraic Models for Optimization
– D-RM Builder

• Dynamic Reduced Model Builder
– iREVEAL

• CFD to Surrogate Process Models
• Data Management Framework

– Provenance Tracking & Integration
• Oxycombustion System Optimization

– Cryogenic Systems
– Boiler Model
– Trust Region Methodology

• Advanced Process Control Framework
• Membrane module & system model

Process Systems Engineering & Crosscutting Tools
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Framework for Optimization, Quantification of Uncertainty and Sensitivity

D. C. Miller, B. Ng, J. C. Eslick, C. Tong and Y. Chen, 2014, Advanced Computational Tools for Optimization and Uncertainty Quantification of Carbon Capture Processes. In Proceedings 
of the 8th Foundations of Computer Aided Process Design Conference – FOCAPD 2014. M. R. Eden, J. D. Siirola and G. P. Towler Elsevier.

SimSinter
Standardized interface for 

simulation software
Steady state & dynamic

Simulation
Aspen

gPROMS
Excel

SimSinter Config
GUI
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FOQUS
Framework for Optimization Quantification of Uncertainty and Sensitivity

Meta-flowsheet: Links simulations, parallel execution, heat integration
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Under 
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Optimization Under Uncertainty
using a Two-Stage Approach

Design Phase
Uncertain parameters are 

characterized probabilistically

Optimize design variables while 
taking into account uncertainty 

of unknown parameters

Operating Phase
Uncertain parameters have 

been realized

Optimize operational variables
in response to realized design 

parameters

Bubbling 
Fluidized

Bed (BFB) 
System

Design Variables:
• Absorber/regenerator 

dimensions
• Heat exchanger areas 

and tube diameters

Uncertain Parameters:
• Flue gas flowrate (load-following)
• Flue gas composition (fuel type)
• Reaction kinetics

Operational Variables:
• Steam flowrate
• Cooling water flowrate
• Recirculation gas split 

fraction

)),,(( ΘXBFBCOEG

G() – some statistics, e.g. mean
Θ - uncertain parameters
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Solid Sorbents Models & Demonstration
• Basic data models

– SorbentFit (1st gen model)
– SorbentFit extension for packed beds
– 2nd generation sorbent model which 

accounts for diffusion and reaction 
separately 

• CFD models
– Attrition Model
– 1 MW bubbling fluidized bed adsorber

with quantified predictive confidence
– High resolution filtered models for 

hydrodynamics and heat transfer 
considering horizontal tubes

– Validation hierarchy
– Comprehensive 1 MW solid sorbent 

validation case via CRADA
– Coal particle breakage model with 

validation

• Process models
– Bubbling Fluidized Bed Reactor Model
– Dynamic Reduced Order BFB Model
– Moving Bed Reactor Model
– Multi-stage moving bed model
– Multi-stage Centrifugal Compressor 

Model
– Solids heat exchanger models
– Comprehensive, integrated steady 

state solid sorbent process model
– Comprehensive, integrated dynamic 

solid sorbent process model with 
control
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Solid Sorbent: Process Systems Example

Lab & Pilot Scale
Experiments & Data

Device Scale Models 
Validated 3-D, CFD

Process Systems
Design, Optimization & Control

Physical Properties
Kinetics

Thermodynamics
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Bubbling Fluidized Bed Process Model
1-D, two-phase, pressure-driven and non-isothermal
models developed in both ACM and gPROMS

• Flexible configurations
– Dynamic or steady-state
– Adsorber or regenerator
– Under/overflow
– Integrated heat exchanger for 

heating or cooling

• Supports complex reaction kinetics
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• Discrete decisions:  How many units? Parallel trains? 
What technology used for each reactor?

• Continuous decisions: Unit geometries
• Operating conditions:  Vessel temperature and pressure, flow rates, 

compositions

Carbon Capture System Configuration

Surrogate models for 
each reactor and 
technology used
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• Step 1: Define a large set of potential basis functions

• Step 2: Model reduction

ALAMO: Model Development & Overfitting

True error
Empirical error

Complexity

E
rr

or

Ideal Model

OverfittingUnderfitting
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Superstructure Optimization

Optimal layout 

Mixed-integer nonlinear 
programming model in GAMS

• Parameters
• Variables
• Equations

• Economic modules
• Process modules

• Material balances
• Hydrodynamic/Energy 

balances
• Reactor surrogate models

• Link between economic 
modules and process modules

• Binary variable constraints
• Bounds for variables
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Objective Function:  Maximize Net efficiency
Constraint:  CO2 removal ratio ≥ 90% 

Flowsheet evaluation (via process simulators)
Minimum utility target (via heat integration tool)

Decision Variables (17): Bed length, diameter, sorbent and steam feed rate
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Optimization with Heat Integration

w/o heat 
integration Sequential Simultaneous

Net power efficiency (%) 31.0 32.7 35.7
Net power output (MWe) 479.7 505.4 552.4
Electricity consumption b (MWe) 67.0 67.0 80.4
IP steam withdrawn from power cycle (MWth) 0 0 0
LP steam withdrawn from power cycle (MWth) 336.3 304.5 138.3
Cooling water consumption b (MWth) 886.8 429.3 445.1
Heat addition to feed water  (MWth) 0 125.3 164.9

Base case w/o CCS: 650 MWe, 42.1 %
Chen, Y., J. C. Eslick, I. E. Grossmann and D. C. Miller (2015). "Simultaneous Process Optimization and Heat Integration Based on Rigorous Process 
Simulations." Computers & Chemical Engineering. doi:10.1016/j.compchemeng.2015.04.033

Objective Function:  Maximize Net efficiency
Constraint:  CO2 removal ratio ≥ 90% 

Flowsheet evaluation (via process simulators)
Minimum utility target (via heat integration tool)

Decision Variables (17): Bed length, diameter, sorbent and steam feed rate



21

Uncertainty Quantification for Prediction Confidence
 Now that we have

• A chemical kinetics model with quantified uncertainty
• A process model with other sources of uncertainty
• Surrogates with approximation errors
• An optimized process based on the above

 UQ questions
• How do these errors and uncertainties affect our prediction 

confidence (e.g. operating cost) for the optimized process?
• Can the optimized system maintain >= 90% CO2 capture in the 

presence of these uncertainties?
• Which sources of  uncertainty have the most impact on our prediction 

uncertainty?
• What additional experiments need to be performed to give acceptable 

uncertainty bounds?

CCSI UQ framework is designed to answer these questions
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Perform statistical analyses with FOQUS
Ensemble Analyses
Uncertainty analysis
Sensitivity analysis
Correlation analysis
Scatterplots for visualization

Response Surface (RS) Analyses
RS validation
RS visualization
RS-based uncertainty analysis
RS-based sensitivity analysis
RS-based Bayesian inference

Ensemble UA

RS-based UA

RS-based SA

RS
validation

RS visualization

RS-based 
Bayesian inference
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Solid Sorbents: Validated CFD Model Example

Lab & Pilot Scale
Experiments & Data

Device Scale Models 
Validated 3-D, CFD

Process Systems
Design, Optimization & Control

Physical Properties
Kinetics

Thermodynamics
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C2U 
Batch
Unit

Building Predictive Confidence for Device-scale CO2 
Capture with Multiphase CFD Models
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Intermediate Validation with Unit Problem 3
Predicted Breakthrough Curves for Held-out Runs 
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Filtered Models with Heat Exchanger Tubes

Model-on-model verification
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Quantitatively predicting scale up performance
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Solvent System Models & Demonstration
• Basic data models

– Unified tool to calibrate solvent data
– High Viscosity Solvent Model, 2-MPZ
– Properties model for Pz/2-MPz Blends 

(Aspen)
• CFD models

– VOF Prediction on Wetted Surface
– Prediction of mass transfer coefficients 

by calibration of fully coupled wetted 
wall column model

– Preliminary CFD simulation of a solvent 
based capture unit

– Validation hierarchy

• Process models
– “Gold standard reference” process 

model, both steady-state and dynamic
– Methodology for calibration/validation 

of solvent-based process models to 
support scale up
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Solvents: System Model Example & Validation

Lab & Pilot Scale
Experiments & Data

Device Scale Models 
Validated 3-D, CFD

Process Systems
Design, Optimization & Control

Physical Properties
Kinetics

Thermodynamics
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Predictive Model Development & Validation

Luo et al., “Comparison and validation of simulation codes against sixteen sets of data from four different pilot plants”, Energy Procedia, 1249-1256, 2009 

ProTreat-Optimized Gas Treating, Inc.; CO2SIM-NTNU/SINTEF
CHEMASIM-BASF SE;  AspenRatesep-modified by IFP
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• Diffusivity, viscosity, surface tension, interfacial area, and mass transfer 
coefficients all important

• Data from both wetted wall column and packed column considered
• Simultaneous regression of these models not previously possible
• FOQUS has the capability of simultaneous regression

Integrated Mass Transfer Model Development
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Optimized model for 
wetted wall column 

experiments

Might not exactly 
predict the data of an 

absorber column

Usual approach: Sequential regression

FOQUS capability: Simultaneous regression

FOQUS can run multiple 
simulations and optimize an 

unique model for mass 
transfer and interfacial area 
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CCSI Team Conducted Tests at NCCC
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Steady State Absorber Validation
No parameters tuned

Case 1: L/G=3.81 
3 bed absorber with 
two intercoolers
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Temperature Profiles

Case 5:
6.43 L/G ratio
Intercooling present
17.18% CO2 in flue gas
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Regenerator Validation
No parameters tuned

Case 6:
7240 kg/hr solvent
425 kW reboiler duty
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Case 1: 
12000 kg/hr solvent
680 kW reboiler duty
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Advanced Computational Tools to Accelerate 
Carbon Capture Technology Development

Lab & Pilot Scale
Experiments & Data

Device Scale Models 
Validated 3-D, CFD

Process Systems
Design, Optimization & Control

Physical Properties
Kinetics

Thermodynamics
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• CCSI Toolset
– Suite of rigorous, validated, predictive models
– Computational tools
– Methodologies for UQ, validation, model development
– Broadly applicable to many carbon capture concepts

• How to maximize the benefit of CCSI investment and 
accomplishments?
– Deploy the tools
– Utilize the tools
– Train industry

CCSI status as of January 2016
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Carbon Capture Simulation for Industry Impact

• Work closely with industry partners to help scale up
– Large scale pilots

• Help ensure success at this scale
– Employ simulation to predict performance, potential issue
– Help resolve issues using simulation tools

• Maximize learning at this scale
– Data collection & experimental design
– Develop & Validate models
– UQ to identify critical data

• Help develop demonstration plant design
– Utilize optimization tools (OUU, Heat Integration)
– Quantitative confidence on predicted performance
– Predict dynamic performance

– Partnership via CRADA
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Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United 
States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government 
or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof.
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