

An Advanced Catalytic Solvent for Lower Cost Post-combustion CO₂ Capture in a Coal-fired Power Plant

Award # DE-FE0012926

<u>Cameron Lippert</u>, James Landon, Kun Liu, Moushumi Sarma, Rafael Franca, Reynolds Frimpong, Guojie Qi And Kunlei Liu

University of Kentucky, Center for Applied Energy Research

http://www.caer.uky.edu/powergen/home.shtml

Email: cameron.lippert@uky.edu

Project Overview

Overall Objective: Address technical hurdles to developing an integrated process focused on a catalyzed solvent utilizing homogeneous catalyst.

Project Details

- Benefit from multiple CAER technologies: solvent; catalyst, membrane, process
- Project cost:
 - DOE share:\$2.97M
 - Cost share:\$742K
- **Period performance:** 10/1/2013 9/30/2016

Project Objectives

- Build towards low-cost CO₂ capture system via Integration of multiple CAER technologies
- To verify an advanced catalytic solvent with integrated membrane dewatering for solvent enrichment in our 0.1MW pilot plant (Proof of concept)

CAER Center for Applied Energy Research	CMRG	SMG	WorleyParsons resources & energy
 Project management Catalytic solvent testing ASPEN modeling 	 Technical support 	PPE recommendationEH&S analysis	 Front-end engineering support TEA

CENTER FOR APPLIED ENERGY RESEARCH Project Schedule and Milestones UK

	Previous work		Current Project			Future Development	
Yr	2011-2013	2013	2014	2015	2016	2017-2020	>2020
BP	-	1	1/2	2/3	3	-	-
	Fundamental Development; Proof-of-Concept				Ve Ur	lipstream ~2 MWth rification Testing on hit	~20 MWe 0.1 MWth
Laborat	tory Validation and Scale	e-up					
• <u>Solve</u> • Milest	nt Optimization one: VLE and model	Par MV	ametric Tes /th Unit	sting on 0.	1 • <u>v</u>	erification Run lilestone: 500hr verificat	ion run
• <u>Memk</u> • Milest	orane Enrichment one: 5% enrichment over 5h	• <u>Ca</u> • Mi	atalyst Prod lestone: 500	<u>uction</u> g produced	• <u>N</u> • N 2	Tembrane Enrichment 1ilestone: Unit integrated 0% dewatering observed	l and d
• <u>Cataly</u> • Milest produc	<u>yst Scale-up</u> one: Develop method to ce 50g/batch	• <u>Pa</u> • Mi wit	arametric Te lestone: 100 thout catalys	<u>sting</u> hr runs with t completed	and $\bullet \underline{\mathbf{I}}$ $\bullet \mathbb{N}$ 20 co	echno-Economic Anal filestone: TEA showing % reduction in energy compared to Case 12	<u>ysis</u> at least ost
•Milesto front-e	one: PPE recommendation & and engineering analysis	• <u>M</u> • Mi 10	embrane En lestone: 10% 0hr and mod	<u>richment</u> 6 enrichment lule design	t over • E • N a	H&S filestone: Favorable EH ssessment	S

Design and Work Plan

CAER ad-CCS Process

Pre-absorber CO_2 enrichment and dewatered CAER-B3 used to lower the energy cost of CO_2 capture.

UK

Catalytic Solvent CO₂ Capture UK

<u>Advantages</u>

- Potential for reduced capital cost for post-combustion CO₂ capture
 - Increased scrubber kinetics (smaller absorber)
- Potential for reduced energy consumption compared to reference case (MEA)
 - High α; cyclic capacity
 - High stripper temperatures/pressure
 - Less solvent make-up rate

Challenges

- Transition from lab- to bench-scale process under real flue gas conditions
- Solvent oxidation via catalyst addition
- Integration of multiple technologies

Higher the value of k_{obs} higher the mass transfer rate

2015 NETL CO₂ Capture Technology Meeting

Achieve rate enhancement at higher carbon loadings

UK

Improved Catalyst

• 10% rate enhancement in CAER-B3

 Retains activity after heating at 145 °C for 150h

• Simple catalyst preparation; suitable for scale-up

BP2 Activities

Task Number	Title	Description		
7	Updated Project Management Plan for budget period 2.	Review and update PMP/SOPO		
8	CAER catalyst Production Production of at least 500 g of CAER catalyst			
9	Parametric CAER-B3 investigation	100 hour parametric study on conventional PCC using CAER solvent without catalyst at bench-scale completed		
10	Parametric catalytic CAER-B3 investigation	100 hour parametric study with catalyst and gas pre- concentration membrane at bench-scale completed		
11	Membrane dewatering	Membrane shown to dewater CAER-B3 solvent by at least 10% over 100 hours in lab-scale single element testing		
11	Zeolite membrane bench-scale test module design	Completed design for dewatering membrane test module for integration in 0.1 MWth bench-scale test unit		

- BP2 has focused on testing in our 0.1 MWth unit
 - baseline testing, parametric catalytic solvent testing
 - short term degradation analysis
- Membrane improvement and module design for pilot integration

BP2 Milestones

Task #	Milestone	Description	Deliverable Date	Completion Date	
7	Updated PMP for BP 2	Review and update PMP/SOPO	10/30/14	12/18/14	
8	CAER catalyst production	Production of at least 500 g of CAER catalyst	12/31/14	12/17/14	
9	Parametric CAER-B3 investigation	100 hr parametric study on conventional PCC using CAER solvent without catalyst at bench-scale completed	2/28/15	1/29/15	
10	Parametric catalytic CAER-B3 investigation	100 hr parametric study with catalyst and pre- concentration membrane at bench-scale completed	8/15/15		
11	Membrane dewatering	Membrane shown to dewater CAER-B3 by at least 10% over 100 hr in lab scale testing	5/31/15	2/24/15	
11	Zeolite membrane bench-scale test module design	Completed designs for dewatering membrane test module for integration into 0.1 MWth bench-scale unit	6/30/15	6/8/15	
		Success Criteria			
A minimum process energy operating condition established based on 100 hour parametric testing for the CAER catalyzed advanced amine solvent showing at least a 20% reduction in stripping energy compared to uncatalyzed CAER-B3 solvent.					
The validation to show the advantages of the CAER catalyzed amine to the uncatalyzed CAER advanced amine solvent verifying at least a 10% increase in overall mass transfer or 5% more rich solution at the CAER bench-scale evaluation.					
Zeolite membrane performance at the lab-scale maintains chemical and mechanical stability for 100 hour run verified.					

Previous Work

Scale (g)	Ligand Yield (%)	Ligand Purity (%)	Catalyst Yield (%)	Catalyst Purity (%)
1	> 90	> 90	50	> 90
5	> 90	> 90	86	> 90
20	70	> 90	77	> 90
50	> 90	> 90	81	> 90
100	> 90	> 90	92	> 90

Zeolite layer ca 50 -60 µm

R Zeolite Membrane Characterization

2015 NETL CO₂ Capture Technology Meeting

UK

Long term dewatering operation

Membrane: TMAOH/ 1.0 % seed solution /3 s deposition / 10h crystallization (100°C) Conditions: CAER-B3 solvent α =0.4 , 100°C, 70 PSI, 20 mL/min

High packing density of separation area

Values based on permeate flux of 10kg/m²h and flow rate of 40 mL/min

l= 10 cm

Active area of each membrane = 23.5 cm² Target Permeate flow rate = 200ml/min Assuming 20% rejection= 91 membrane tubes

l= 18cm

Active area of each membrane = 48.7 cm² Target Permeate flow rate = 200ml/min Assuming 20% rejection= 44 membrane tubes

6 Tubes/Module

2015 NETL CO₂ Capture Technology Meeting

UK

 Use of nanoseeds (OSU) towards the production of a defect-free membrane

Ideal thickness 5-10 µm to produce higher flux

Bench-Scale CAER-B3 Testing

- Different L/G ratio from variation in liquid circulation
- Absorber inlet temperature (30, 40°C)
- Stripper pressure (45, 55 psia)

	Total amine wt%	Alkalinity (mol/kg)	Viscosity @ 40 °C (cP)	% Capture	Energy (Btu/Ib CO ₂)
	29.7	5.34	4.67	81	2006
April	66.5	7.04	12.84	76	1980
	40.2	4.88	3.76	81	2114
	38.8	4.87	3.85	81	2007
	40.66	4.98	4.04	75	2135
May	36.61	5.05	4.28	79	2107
	42.45	5.10	4.46	79	2085
	35.3	5.18	5.06	77	2034
	36.41	5.03	3.98	78	2005

Baseline – No Catalyst Added

Maintained similar capture for a range of varying relative concentrations of amines in blend

2015 NETL CO₂ Capture Technology Meeting

CAER-B3 Performance Tests

Slow decrease in [amine]
 most likely from aerosol emissions

• Slow increase in alkalinity and viscosity

IK

Membrane Installed

- Membrane successfully integrated with bench unit with accompanying vacuum pump and blower
 - Modified process
- Demonstrated CO₂ preconcentration by a factor of ~2 obtainable in system

				Stripper			
		Liquid	Absorber	bottom	Capture	Energy	
	L/G	load	LMTD	temp.	efficiency	(Btu/lb CO ₂)	
Run	wt/wt	m³/(m².h)	(°C)	(°C)	%		
Ref 1	5.1	19	50	134	77	2091	
Ref 2	5.3	19	47	135	81	2006	
	Membrane						
1	4.9	17.8	43	137	82	1650	
2	3.8	13.6	41	138	80	1473	
3	3.7	13.4	42	140	82	1515	
4	3.1	10.8	42	140	88	1412	
5	2.9	10.6	43	140	86	1465	

Energy savings of \sim 25% could be obtained from the reduced L/G runs with the membrane.

The work presented here was made possible through funding by:

- The U.S. DOE/ National Energy Technology Laboratory
 - Project Award # DE-FE-0012926
- Carbon Management Research Group: Duke Energy, EPRI, LGE&KU, DEDI, AEP

A DEPARTMENT OF REAL	CAER Center for Appalled Energy Research	CMRG	SMG	Worley Parsons resources & energy
 Lynn Brickett José Figueroa 	 Heather Nikolic Kun Liu Jesse Thompson Brad Irvin 	 John Moffet David Link Michael Manahan Doug Durst Talina Matthews Abhoyjit Bhown Curtis Sharp 	 Clayton Whitney Sarah Carty 	 Mike Bartone Vlad Vaysman

