

Supersonic Post-Combustion Inertial CO₂ Extraction System

Bench Scale Project Status Update

2014 NETL CO₂ Capture Technology Meeting Pittsburgh, PA 24 June 2015

Vladimir Balepin, Ph.D. Anthony Castrogiovanni, Ph.D. Andrew Robertson Jason Tyll, Ph.D.

• Funding

- NETL: \$ 2,999,673
- Cost Share: <u>\$ 749,918</u>
- Total: \$3,749,591

Project Performance Dates

• 1 Oct 2014 - 30 Sep 2017

Project Participants

- ATK & ACENT Laboratories
- Ohio State University
- EPRI
- NYSERDA and NYS-DED

Project Objectives

- Demonstrate inertial CO₂ extraction system at bench scale
- Develop approaches to obtain condensed CO₂ particle size required for migration
- Demonstrate pressure recovery efficiency of system consistent with economic goals
- Demonstrate CO₂ capture efficiency

ICES Technology Background

Thermodynamics of ICES

Low static pressure and temperature in supersonic nozzle causes CO_2 to precipitate as a solid – need to remove before diffusing back to low speed

4

laboratorie

Advantages	Challenges
No moving parts, chemicals/additives or consumable media	Maximization of CO ₂ particle size with limited residence time
Inexpensive construction (sheet metal, concrete)	Minimization of "slip gas" removed with solid CO_2
Small footprint (current bench scale test article is 250kW, 3" x 24" x 96"	CO_2 purity (all condensable material will be removed with CO_2)
"Cold sink" availability in solid CO ₂	Solid CO ₂ processing
Costs primarily driven by flue gas compression	Optimization of flowpath pressure recovery

Summary of ARPA-e IMPACCT Activity

Principal conclusion of this effort was that CO_2 particles >2.5µm are required for efficient operation - need to control particle size generated

Program Plan for Current Effort

• Year 1

- Lab-scale tests (OSU) to develop understanding of factors controlling particle size and methods to increase
- Bench scale tests at ATK to demonstrate capture efficiency and diffusion with surrogate CO₂ injection (liquid throttle of CO₂ to produce controlled particle size)
- <u>Success criteria</u>: Demonstrate 50% capture, show path to pressure recovery required

• Year 2

- Integrate methods to increase particle size in bench scale test article
- Test with surrogate flue gas $(Air + CO_2 + H_2O)$
- <u>Success criteria</u>: Demonstrate migration of 80% of CO_2 to 20% of duct height and path to full scale pressure recovery
- Year 3
 - Integrated bench-scale testing with capture + diffuser
 - <u>Success criteria:</u> 75% capture with path to 90%, path to full scale pressure recovery

Lab-scale Testing at Ohio State University

• Test program completed at OSU supersonic aerosol facility to gain better understanding of nucleation process, condensation rates, and particle size behavior

Initial test results proved that under our conditions, CO_2 only condenses on solid or liquid media in the flow (i.e. heterogeneous condensation)

laboratories

Orbital ATK

Lab-scale Testing at Ohio State **University (continued)**

 $v_{co2} = 0.2 \text{ kg/kg}$ = 2 atm

= -1 cm

- Test and analysis matrix included methods of inducing turbulent particle collisions to promote agglomeration
- These approaches proved to be too intrusive and • resulted in local temperature increase
- Attention focused on solid CO₂ injection/seeding

Combination of test data and detailed modeling led to conclusion that solid media (e.g. CO_2) seeding is most viable path to 90%+ capture by causing flue gas CO₂ to condense on particles already $>2.5\mu m$

One CO₂ Recirculation Approach

laborator

Current Bench Scale Test Arrangement (250kW)

laboratorie

Laser Images of CO₂ in Flow

CO₂ Capture Data

Gas samples taken from primary flow stream were processed with on-line gas chromatograph (GC) and NDIR sensors to access CO_2 mole fraction.

<u>Last year</u> - goal of capture >50% of CO₂ achieved for short duration tests. Cumulative measurement error due to GC and NDIR sensor contamination after first several seconds

Orbital ATK

<u>This year</u> – gas sample approach reworked to mitigate several sources of error including time lag, pump oil contamination + added in-situ calibration. Preliminary review of results indicate >50% capture of solid CO₂ in several recent tests – data still in detailed review

Full Scale Pressure Recovery Predictions

Current scale limits pressure recovery performance due to thick boundary layer relative to duct size. We have shown path to target pressure recovery of 40% through:

- CFD benchmarking using subscale test results and predictions of full scale performance
- Definition of flowpath updates required to improve performance from 31% to 40% overall pressure recovery

Component	CFD Current Configuration	Desired Performance
Expansion Duct	79 %	85%
Turning Duct	88%	95%
Diffuser Duct	45%	50%
Total	31%	40%
		ACEN

laboratories

- A preliminary Techno-economic assessment by WorleyParsons (WP) was carried out in 2013
- Key efficiency/economic numbers are provided in the table below:

Metric	Case 11	Case 12, Amine Plant	ICES Plant
CO ₂ capture	no	yes	yes
Net plant efficiency (HHV basis)	39.3%	28.4%	34.5%
COE % increase	base	77%	42%
Parasitic Load	5.5%	20.5%	7.3%
Cost per tonne of CO ₂ captured	NA	US\$ 62.8	US\$ 41.8
Cost per tonne of CO ₂ avoided	NA	US\$ 90.7	US\$ 48.4

Orbital ATK

ICES Plant Layout and Footprint

laboratories

ICES footprint of ~8k m² compares to 20k to 30k m² for an amine plant of similar capacity. ICES nozzle and compressor stacking can further reduce footprint by 30-40%.

Project Schedule

- MS 1. Updated BP1 PMP complete
- MS 2. Kickoff meeting complete
- MS 3. Capture duct/diffuser demonstration complete
- MS 4. Updated BP2 PMP complete

Summary

- Orbital ATK
- ICES Technology holds considerable promise as an alternative to adsorbents and membranes
- Current NETL effort focused on solving key technical challenge of particle size
 - Testing and analysis results to-date support strategy of solid CO₂ recirculation as most viable approach
 - Ongoing work to optimize CO₂ injection arrangement to minimize evaporation upstream of supersonic section and to redesign turning duct to increase pressure recovery performance

Acknowledgements

Orbital ATK

• NETL

- Andy O'Palko
- Lynn Brickett

• ATK

- Bon Calayag
- Florin Girlea
- Michele Rosado
- Dr. Daniel Bivolaru
- Kirk Featherstone

• ACENT Labs

- Dr. Pat Sforza
- Randy Voland
- Robert Kielb

- Ohio State University
 - Professor Barbara Wyslouzil
 - Dr. Shinobu Tanimura
- EPRI
 - Dr. Abhoyjit Bhown
 - Adam Berger
- NYSERDA
- NYS-DED

