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Presentation Outline

Tracers for CO, storage programs
Cranfield, Mississippi SECARB project
Conservative perfluorocarbon tracers
Gas and isotope geochemistry

Lessons learned from tracers in brine
CO, storage

Future plans



Benefit to the Program:
Geologic Storage and Simulation and Risk Assessment

Injectivity, Flow, and Regional
Brine Management

Provide information on physical

and geochemical changes in the
reservoir, ensuring CO, storage

permanence

Facilitate a fundamental under-

standing of processes impacting
the behavior of fluids —diffusion,
dispersion, mixing, advection, and
reaction— to improve storage efficiency

Geomechanical and
Microseismicity

Geochemical
Reactions

Ground-truth behavior of fluids and
gases, CO, transport properties and CO,
saturation that can be used to constrain
reservoir simulation models, predicting
CO, storage capacity & designing
efficient MVA programs . —

Permeability, Porosity, Wettability among other
factors effecting CO, Trapping

Caprock

Bowret Comeboty o Tt i e Bt D04 g P SO0

Modified from NETL Carbon Storage GSRA Technology Research Areas lllustration



Project Overview

Develop complementary tracer methods to interrogate
the subsurface for improved CO, storage efficiency
and permanence

— Complete geochemical and PFT analysis from 5-year
Cranfield, Mississippi storage project

— Transfer technology to storage project partners
— Improve ultra-trace detection methods for PFT mixtures

— Integrate geochemical, isotope and PFT results into an
advanced reservoir simulator for improved storage
predictions



Candidate Tracers
(complementing hydrology and geophysics)

Brines: Native non-conservative tracers that respond to changes
pH, alkalinity, electrical conductivity
Cations: Na, K, Ca, Mg, 2Fe, Sr, Ba, Mn
Major anions: Cl, HCO,, SO, F, Br
Organic acids: acetate, propionate, formate, oxalate, etc.
Other organics: DOC; methane, CO,, benzene, toluene

(Gases: Native conservative tracers or added conservative tracers

Gases: N,, H,, O,, CO,, CO,CH,, C,-C, .

Noble gas tracers: Ar, Kr, Xe, Ne, He (and their isotopes)

Perfluorocarbon tracers (PFTs):
PMCP, PECH, PMCH, PDCH, PTCH (SFy)

Isotopes: D/H, 180/180, 87Sr/%6Sr in water, DIC, minerals;
13C/'2C in CH,, CO,, DIC, DOC, carbonates
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Processes Impacting Tracer Signals

Hydrodynamic: Mixing, dispersion, advection

Dissolution and/or exsolution at gas/brine/HC interfaces
Diffusion into brine

Sorption onto mineral surfaces

Partitioning into hydrocarbons: liquid or solid (e.g. kerogen)
Microbial activity — biomineralization

Fluid-rock interaction (weathering, digenesis, hydrothermal)

Diffusion in porous/fractured media; minerals

A combination of tracers assesses the multiple length and time scales
relevant to Carbon Storage.
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Benefits of PFTs & SFg
Conservative Tracers

= Non-reactive, non-toxic,
inexpensive & stable to 500°C

= Detectable at pg-fg levels

= Several PFTs can be
quantified in a single analysis

= Scalable to 1000s of samples

= Different PFT “suites” assess
multiple breakthroughs
— flow regime indicator

= Complements stable isotopes
and geochemistry for
modeling heterogeneous flow
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Cranfield, MS
Wells
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PFTs at Cranfield — F2 Well
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PTCH Tracer Results from Cranfield

DAS well distances
F1 === F2 (68 m)=—=—==p F3 (112 m) April 2010 campaign:
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Final Cranfield Campaign

« (Gas and water samples
for PFT, water chemistry
and stable isotope
analyses from the DAS
site and from nearby
production and separation
wells

* 14 wells sampled for
PFTs

» Additional samples from
various CO, injection

Gas collection into

wells, Jackson Dome CO, o) canister directly Gas/water separator for
and_ r.ecylcled CO, used at well fitting. gas collection. Fluids
for injection. were collected into a

carboy.
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PFTs Present After 5 Years of Experiment

« Long-term diffusive tail PECH Timecourse (Well CFU31-F3)

(50 X longer than Frio) __ 1000000 2009 2010 2015
N
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©
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PFTs Observed as Peak Area Units for the F3 Observation Well
F3 Pre-Vent 01-13-| F3 Post Vent 01-23- | F3 Post Vent  01-26-
PFT 15 15 15
SF6 185,245 0 0
PMCP 571 173 37
PMCH 1079 428 121
PECH 2017 1233 377 12
PTCH 541 376 107




Lessons Learned

Long-term experiments are important
(long-tail)

Flow paths evolve in the reservoir
Sensitive tracer detection is critical

Suites of tracers are essential for
interpreting flow

Multiple suites of tracers are required for
monitoring with repeated injections
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Benefits of Stable Isotopes as

Nonconservative Tracers
(180/160, D/H, 13C/12C, 87Sr/¢6Sr )

= Naturally occurring in gases, brines, rocks

» Sensitive, established mass spectrometric
methods

= Kinetic & equilibrium partitioning constrained
= Assess gas-brine-rock interaction processes
= Assess leakage from reservoir; well bore

= Complementary to gas and brine chemistries
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Strontium Isotope Variation with Time
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The presence of CO, dissolved in the Cranfield brine may have enhanced
reactivity with the sandstone thus releasing some additional 87Sr

from feldspars or clays. 15



Carbon Isotopes (13C/12C) of Injected CO, Gas from
Jackson Dome Show Good Mixing with Tuscaloosa CO,

0
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Simple two-component fluid mixing dominates at the DAS site
No obvious evidence of CO, reaction with reservoir rock carbonates 16




Cranfield: Brine O and H Isotopes
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Modeling of O isotope shifts in CO,
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Effect of brine O isotope composition and
temperature on CO, O isotopes

CO, oxygen isotope change due to interaction with fluid
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O isotope change in CO, reacted with two different
fluid types at two different temperatures, 20 and 100°C. 19



Summary of Key Isotope Results

Possible dual source for Sr — formation brine + dissolution
of sediment (more 37Sr/8Sr in progress)

Mixing of CO, injectate and reservoir CO, revealed by
carbon isotopes = ensure storage permanence, MVA

Oxygen isotope shifts in CO, and brine yield estimates of
CO,/brine mass ratios complementary to RST
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Incorporating Tracer Results in
a Reservoir Simulator

Leverage a state-of-the-art reservoir simulator for
compositional multicomponent multiphase flow

Tracers added as conservative or weakly non-conservative
species, with advection-diffusion-dispersion transport

el -

~

\\‘

EOS compositional modeling to predict local changes in

density & viscosity
21

Dr. Joachim Moortgat (OSU)



Incorporating Tracer Results in
a Reservoir Simulator

Leverage a state-of-the-art reservoir simulator for
compositional multicomponent multiphase flow

Tracers added as conservative or weakly non-conservative
species, with advection-diffusion-dispersion transport

PVI=45%

EOS compositional modeling to predict local changes in

density & viscosity
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Future Plans & Synergies

Validate
Best methods to
practices _ of s\“es»‘ ps assess
Tracer field oo ?a(me storage
deployment cS® '«\Jv“ permanence
S
& Tech Transfer “6“
Interpret PFT and
Improve ultra- geochemical tracer
trace detection results in advanced Enhanced
of PFTs reservoir simulator prediction
of C02
MVA, ’ storage
reservoir capacity &
operation optimizing
for storage injection
efficiency plan
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Gantt Chart

2015 2016 2017
Task Description Q1 Q02 Q3 04 Q1 Q02 Q3 04 AQi Q2 Q3 Q4

Sampling plan

Initial gas-brine isotope model

PFT comparison

Geochem comparison

Tech transfer update

Technology survey

Geochem and isotope integration

10X PFT Implementation plan

Brine-CO2 & PFT transport

Tech transfer update

Test 10X PFT enhancement

100X PFT implementation plan

Test 100X PFT enhancement
Isotope simulation reactive transport
Field test enhanced PFT analysis
Tech transfer update
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Accomplishments and Benefits to Program

* Accomplishments

Assessing water-mineral-CO, interactions using geochemical modeling and isotopic
signatures in baseline, during and post injection for multiple sites and campaigns.

Determine behavior of perfluorocarbon tracer suites, breakthrough, development of
reservoir storage over time at multiple sites.

Delineate CO, fronts with PFT’s, isotopes and on-line sensors (T, pH, Cond.).
Established methods, proven successful, inexpensive, ongoing collaborations.

Procedures for monitoring, verification and accounting (MVA) as tech transfer for
larger sequestration demonstrations complementing other sites/partnerships.

Benefits,

Fate, Breakthroughs, Transport, Interactions, MVA, and Technology Transfer.
Established, successful, inexpensive, Technology Transfer collaborations.
Lessons Learned of baseline needs and multiple natural and added tracers.

Publications: 13 journal/book articles and a dozen proceedings papers.
Education: 4 Students and 2 postgraduates. OAK

RIDGE

National Laboratory




Brine/CO, Ratios Based on Shifts in 180/160
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Pronounced 180/1%Q Shifts in Brines

Possible Mechanisms 180/1%0 /ine

depletion enrichment

Mixing with groundwater X
Evaporation/boiling X
Reaction with reservoir rock X

@:tion with CO, X X
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O and C isotope exchange in a

Gulf Coast CO,-brine-carbonate system
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Changesin C and O isotopes in CO, as a result of reaction-path modeling.
Circles on trend lines refer to the mole ratio of CO,/(rock + brine).

31



Reservoir modeling of tracers

Backbone: State-of-the-art reservoir simulator for
compositional multicomponent multiphase flow

Higher-order Finite Elements for high accuracy on coarse
(unstructured) grids with permeability anisotropy &
heterogeneity (including fractures and faults)

EOS-based phase-split computations and phase behavior

Tracers added as conservative or weakly non-conservative
species, with advection-diffusion-dispersion transport

Additional complexities (reaction, hysteresis) can be
incorporated if required 32



