Scalable, Automated, Semipermanent Seismic Array (SASSA) for Detecting CO₂ Plume Extent During Geological CO₂ Injection FE0012665

Shaughn Burnison
University of North Dakota
Energy & Environmental Research Center

U.S. Department of Energy

National Energy Technology Laboratory

Carbon Storage R&D Project Review Meeting

Transforming Technology through Integration and Collaboration

August 18-20, 2015

Presentation Outline

- Benefit to the Program
- Project Overview
 - Goals and objectives
- Technical Status
 - SASSA Concept, Location, Source
- Plans
 - Recording System, Geophysical modeling, Processing, Simulations
 - Validation methods, Plume image
- Accomplishments
- Synergy Opportunities
- Summary

Benefit to the Program

- Addresses three of the major Carbon Storage Program goals:
 - Develop and validate technologies to ensure 99% storage performance.
 - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
 - Develop Best Practice Manuals for monitoring, verification, accounting, and assessment.
- The SASSA method may track the location of a CO₂ plume in the subsurface in a timely and cost-effective manner:
 - Improve measurement and accounting of storage performance.
 - May provide a means of remotely detecting out-of-zone migration of CO₂ (ensuring containment effectiveness).
 - Novel application of existing technology may contribute to best practices for MVA (monitoring, verification, and accounting).

Project Overview: Goals and Objectives

- Demonstrate and evaluate a novel seismic deployment method that can be operated remotely (and potentially automated) to show where and when a pressure front or carbon dioxide (CO₂) plume passes a particular subsurface location.
- Two Phases
 - 1. Planning, Procure Equipment, Modeling, Deployment, Testing
 - 2. Data Acquisition, Data processing, and Interpretation
- Goals
 - Install a semipermanent seismic system in the field that includes a safe and remotely operated seismic source.
 - Collect and process data records to identify time-lapse changes that can be verified as being due to the presence of CO₂.

Background and Motivation

- Currently, to determine plume location and extent of injected CO₂ requires multiple 3-D seismic surveys. They provide value and detailed images of the subsurface, but have drawbacks...
 - Expensive and relatively high impact
 - Labor intensive
 - Periodic with intervals of years.
- A DOE Funding Opportunity
 Announcement sought technologies that would be relatively inexpensive and allow tracking of CO₂ within the reservoir with minimal delay.
 - An approach using the seismic method as an indicator to track plume position was submitted and awarded funding.

4D Image from Weyburn showing CO2 Plumes

SASSA Advantage

Smaller Impact, Faster Results

SASSA Concept

- The seismic method used as an indicator to track plume position with minimal expense and delay:
 - Autonomous node-recording instruments and a stationary remote-controlled seismic source make regular time-lapse recordings.
 - Concept: Repeatability of the seismic method.
 - Concept: Introduction of a small percentage of gas to the reservoir may change the character of the reservoir's seismic reflection in a detectable way.

New concept:

- Clever placement of source and receivers employs the seismic method as a yes/no switch to determine when the CO₂ plume has moved past a monitored location within the reservoir.
- 3-D geophysical modeling that accounts for structure and velocity variations is used to determine surface receiver positions.
- Short delay for processing and interpretation.

Fairfield Nodal

Reservoir Layer

Concept: 2-D Profile View

Concept: Overhead View

- Monitor between injectors and producers.
- Track plume progress.
- 3-D modeling determines the surface position of receivers.
 - Example: Colored stars show notional receiver positions to monitor four points on the reservoir along the three likecolored bars.
 - Accounts for ray path complications due to dip and velocity.
 - Analogous arrangements would be used to sample other locations within range.
- Closed system. Over time, only gas content at the reservoir reflection changes.
- A monitored reflection point changes character as CO₂ passes.
- Change is expected to be visible on easily processed time-lapse "difference" displays of the seismic shot records.

Physical Basis

P-Wave Velocity (Vp) Changes Significantly with a Small Amount of Gas

- The introduction of a small percentage of gas to the fluid in a low-pressure reservoir (less than 3000 psi) causes a large change in the P-wave velocity of the interval.
- The 10% drop in Vp with a small percentage of gas should be noted.
- Detectable changes to the character of routinely repeated seismic reflection records over time may indicate plume migration.

Figure 1. Typical effect of gas saturation on *P*-velocity of rocks under shallow conditions.

Han, D.H., and Baztle, M, 2002, Fizz water and low gas saturated reservoirs: The Leading Edge, April 2002.

Phase 4 Study Area

Lidar Image shows topography

Proposed Source Location

Phase 4 Topography

Interpreted Seismic Amplitude - Phase 4 Incised Fluvial Channel Incised Fluvial Channel? Silty Upper Interval 33-08 Clean Sand, Generally 02-03 04-06 03-12 04-11 04-09 Silty Upper Interval

Accelerated Weight Drop Seismic Source

- Offers strength, flexibility and safe, remote operation at an affordable cost:
 - Gisco ESS 850 an 850-lb weight accelerated with a sling-shot.
 - Electrically powered, remotely operable safely within a locked structure.

- Using a sensitivity of 30 millivolts/g of acceleration
 - Acceleration is (1000-730)/30 = 9 g
 - Deceleration is (2730-730)/30 = 33.3 g
- Force=mass * acceleration
 - F = 386 kg * 9 * 9.81 m/s^2 = 34,080 N = 7660 <u>lb.f</u>

Source Structure, Footing, Control

Source protective structure:

- Metal building similar to other Bell Creek wellhead buildings. 10' x 14' with garage door.
- Insulated and heated with a power hookup.
- Sound-proofing to maintain landowner relations.

Source footing:

- Consistent source signature over the course of the project is strongly desired.
- Repeated firing may tend to pack or "dig" a hole.
- 1500 lb engineered immovable sub-grade footing and strike plate to ensure consistency through the project.

Source remote control:

- Via commercial satellite Internet link.
- Webserver controlled relay box has been built.
- Outputs from sensors, internet camera, and the source signature recorder will allow remote assessment of shot quality.

Typical Structure shown

1500 lb footing & strike plate

Recording System

FairfieldNodal Zland System:

Ship date September 4.

System components:

- 96 nodes 3-component 5 Hz geophones; sufficient for flexible deployments.
- Data server station.
- Handheld units for GPS location and mapping of node locations.
- Charger and data download racks.

Field and technical staff training:

 5-day hands-on training at the Energy & Environmental Research Center (EERC) for field team and technical staff.

Pick up the nodes

Monthly Data Harvest, Recharge Batteries

Geophysical Modeling

3D Model Construction with GeoTomo Vecon in progress to determine receiver locations

3D Layer Model: Interval Velocities with Vertical Gradients, Topography, and 3 dimensions.

Depth Converted Seismic

Processing Workflow

Data processing of the SASSA data:

- Simple trace processing:
 - Extract records
 - Spherical divergence and gain
 - Noise filtering
 - Time-lapse differencing
- RadExPro PC-based processing software
- Seismic Un*x

What will a SASSA Record Look Like?

Dynamic Reservoir Simulation

- Predictive simulations of plume migrations using Computer Modelling Group (CMG) software will be used to corroborate and help evaluate SASSA results:
 - A subset of the Bell Creek static geological model covering Phase 4 the SASSA area - will be the input for predictive simulation of plume migration.
 - SASSA results can be used to recalibrate the simulation.
 - Validation methods PNL logs, production logs, and 2D seismic - will be used to evaluate SASSA and simulation results.

Simulation Results with CO₂ Plumes (using CMG software)

Baseline and Repeat 2D Seismic Line

Validation method: 2-D seismic line:

- Before and after SASSA data collection period.
- The recording system has sufficient nodes to acquire 2-D seismic lines.
- A "2-D / 4-D" line recorded after injection could provide proof of CO₂ presence and location
 - Compare with SASSA and simulation results.
 - 2-D seismic difference display shows CO₂ the simulation did not properly place.
 - An example of how SASSA may be used to calibrate the simulation.

Plume Image from SASSA Results

- Possibly a plume image can be inferred by kriging the time-lapse trace amplitude differences.
 - Krige the amplitude values and time-lapse difference the images.
 - We'll have up to 96 points.
 - They will need to be corrected for amplitude vs offset effects.

Accomplishments to Date

- Project location selected.
- Equipment procurement finishing up.
- Source location selection imminent.
- Source structure design complete and in procurement.
- Source remote control system in testing.
- Source strike plate design completed and ready for installation.
- Geophysical modeling underway to determine receiver positions.

Synergy Opportunities

 Aquistore and projects with fixed seismic sources and permanent or semi-permanent receiver arrays may be able to leverage the SASSA time-lapse seismic trace analysis process. An agreement to work with Aquistore data is pending.

Summary

- Nearing completion of Phase 1:
 - Planning, Procure Equipment, Modeling. Deployment and field testing are planned for next month (Sep).
- Field data collection, Phase 2:
 - Scheduled to begin Oct 1.
 - Data processing to start ~ Nov 1.

Contact Information

Energy & Environmental Research Center

University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

World Wide Web: **www.undeerc.org** Telephone No. (701) 777-5355 Fax No. (701) 777-5181

Charlie Gorecki, Senior Research Manager cgorecki@undeerc.org
Shaughn Burnison, Research Manager – Geophysics sburnison@undeerc.org

Appendix

– Questions?

Organization Chart

Gantt Chart

D3 – Technical Paper or Journal Article Based on Processing and Modeling M3 – Start Optimization and Testing of Equipment

M4 - First Data Available for Processing

M6 – Comparison to Conventional Seismic and History Match to Geological Model and Simulation Initiated

M5 - Data Collection Completed

M7 - Data Processing Completed

30

Revision - June 30, 2015

Results and Overall Recommendations

D4 - Final Report

Milestone (M) ◆

Deliverable (D) ▼

Critical Path

Bibliography

No peer-reviewed literature to date.