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Benefit to the Program

Major goals:

Support industry’'s ability to predict CO, storage capacity in
geologic formations to within £30% accuracy;

Develop and validate technologies to ensure 99% storage
permanence.

Project benefits:

Facilitate the development and implementation of efficient
workflows for modeling field-scale GCS in a variety of
geochemically reactive environments, where formations

exhibit multiple scales of permeability (k) heterogeneity.



Project Overview:
Goals and Objectives

Develop, test, and verify the DoE and RS uncertainty analysis for a fully
heterogeneous reference model (FHM) & increasingly lower resolution
“geologic models” created from upscaling the FHM.

Investigate the effect of increasing reservoir k variance and depth on the
uncertainty outcomes including optimal heterogeneity resolution(s). At
greater injection depths, investigate gravity-stable injection.

Investigate the effect of mineral reactions on GCS, including mineral
volume fractions, reactive rate constants, reactive surface areas, and the
impact of different geochemical databases.



Project Overview:
Success Criteria

At increasing depth, for both weakly and strongly heterogeneous systems,
the geologic models can capture the FHM CO, behaviors; - Reduced
characterization cost;

RS analytical models are successfully verified against full-physics reservoir
simulations via HPC, thus prediction uncertainty of any outcome at any time
can be assessed using the low-resolution model(s) running the efficient RS

models. 2 Enhanced computation efficiency;

Mineral storage analysis: seeking the most efficient composition for reactive
storage - Enhanced storage;

Greater injection depth: within the uncertainty analysis framework, identify
the combination(s) of favorable parameters & reservoir conditions that give
rise to gravity-stable flow. - Enhanced storage security.
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Accomplishments to Date

High-resolution reservoir k heterogeneity (3.2 M grid cells) & geologic
(upscaled) models of decreasing k resolutions built;

For multiple system Ink variances, permeability upscaling & single-
phase flow verification;

For multiple system Ink variances, dispersivity upscaling & verification

Parallel simulation of CO, storage with PFLOTRAN & performance
scaling on supercomputer;

Uncertainty analysis of dissolution storage and CO, leakage in
heterogeneous and the geologic models;

Uncertainty analysis of CO, modeling considering mineral reactions;

Uncertainty analysis of CO, modeling in greater injection depths.

)
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Sediment Experiment at SAFL

http://www.safl.umn.edu/
Project Leader: Prof. Chris Paola
Founding: NSF & oil industry consortium




Reservoir Heterogeneity Vs
Geologic Models

FHM 8-unit facies model 3-unit facies model

A 1-unit homogeneous “formation” model is also created (not shown);



MRE

Permeability Upscaling & Verification
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X flow
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Dispersivity Upscaling & Verification

The plume moments are employed to compare the transport upscaling results as shown in Figure 3. The zero. first and
second plume moments are defined as:

M = [[[, (e)sayaz. L, = [[[,(X,0c)dxdyaz  and # = {[[ (X, L) (X, ~L, pedvare=

In addition, both the tailing behavior (Figure 4) and the breakthrough curve (Figure 5) of the FHM have been captured
when the variance of In(X) 1s low to modest.
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Figure 3. Evolution of plume moments with time: (a) & (b) mean plume displacements for vaniance(InK) = 0.1 and 4.5, respectively: (c) & (d) longitudinal
plume covariances for variance(Ink) = 0.1 and 4.5, respectively. The black, red, blue and green lines represent FHM, I-unit, 3-unit and 8-unit models,

respectively.
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Figure 4. Particle locations in the simulation domain with (a) variance(InK) = 0.1, and (b) variance(InkK) = 4.5. The black, red. blue and green points
represent particles from the FHM., 1-unit, 3-unit and 8-unit models, respectively. The squares consisting of black points represent mitial position. The empty
and the filled cycles indicate particles at time 60 years and 180 years for (a) and 1.28 years and 3.84 years for (b). Only 100 particles are shown in one time

step.
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Figure 5. Breakthrough curve: (a) & (b) at x = 500m for variance(InK) = 0.1 and 4.5. respectively: (c) & (d) at x = 1000m for variance(Ink) = 0.1 and 4.5,
respectively. The black, red. blue and green lines represent FHM, 1-unit. 3-unit and 8-unit models, respectively.
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For a given variance,
accuracy: 8-unit > 3-unit > 1-
unit model;

For var(Ink)up to 4.5, 8- and 3-
unit models can accurately
capture plume migration
pathway, mass centroid, and
size; Optimal resolution: 3-unit
model.

For var(Ink) = 0.1, all models
can accurately capture solute
transport BTC; Optimal
resolution: 1-unit model.

For var(Ink) = 4.5, only the 8-
unit model can capture some
aspect of solute transport BTC,;
Optimal resolution: 8-unit or
higher.

Optimal heterogeneity
depends on prediction goal
and system variance. L



PFLOTRAN Scaling on Yellowstone

Yellowstone is a 1.5- 1-unit model (25 M): CO, injection w/ reactive chemistry
petaflops 1000

supercomputer with [ Ideal
72,288 processor cores I Yellowstone M
& 144.6 TB of memory. '

http://www?2.cisl.ucar.e
du/resources/yellowsto
ne

100

T

Time [9]

1-unit model (3.2M): Z " |
* 20 yr CO, injection ' m
+ 2000 yr monitoring - -

* 2048 cores: 9
hours
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Uncertainty Analysis: CO, Storage &
Leakage

Case T Gradient (°C/m) Brine Salinity (Molal) Keap (m?) Inject rate (kg/s)
1 -0.025 0 10175 4
2 -0.025 4 10175 4
3 -0.05 0 10-175 4
4 -0.05 4 10175 4
5 -0.0375 2 10716 2
6 -0.0375 2 10716 8
7 -0.0375 2 1010 2
8 -0.0375 2 1019 8
9 -0.025 2 10175 2
10 -0.025 2 10175 8
1 -0.05 2 10175 2
12 -0.05 2 10173 8
13 -0.0375 0 10716 4
14 -0.0375 0 1019 4
15 -0.0375 4 10716 4
16 -0.0375 4 10719 4
17 -0.025 2 10-16 4
18 -0.025 2 1019 4
19 -0.05 2 10716 4
20 -0.05 2 1019 4
21 -0.0375 0 10-175 2
22 -0.0375 0 10175 8
23 -0.0375 4 10175 2
24 -0.0375 4 10175 8
25 -0.0375 2 10175 4 12



scCO, plume footprint

Time = 2K years (inj rate= 4kg/s; injection time = 10 years):

Heterogeneous

H‘eterog‘eneous.,,_, x)%\' Hetev.rogeﬁéous--..____‘ ._I#Y

«---__- 7~

Formation

1-unit 4 < 1-unit

— o - -~
. > o 7
——— - s

var{ink) = 01 ) ' var{ink) =45

«  When system kvariance is low, the 1-unit model can accurately capture the scCO, plume footprint of the
FHM.

«  8-unitand 3-unit models provide more accurate scCO, plume predictions than the 1-unit model, when

system k variance is high, 13



Dissolved CO, Plume

Time = 2K years (inj rate= 4kg/s; injection time = 10 years):

Heterogeneous . )5\ -
Heterogeneous;. = ° Heterogeneous/ ... -

1-unit

var{/nk) =0.1 o var(ink) =4.5 |

When system k variance is low, the 1-unit model can accurately capture the dissolved CO, plume of the
FHM.

8-unit and 3-unit models provide more accurate dissolved CO, plume predictions than the 1-unit model.
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Dissolved CO,
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* Increasing brine salinity decreases CO, dissolution.

« The 8-unit and 3-unit models yield great accurate dissolved CO, predictions.
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Dissolved CO, at 2000 Years

o =0.1 ?=1.0 =45
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Leakage of CO, into caprock

Time = 2K years (inj rate= 4kg/s; injection time = 10 years):

Heterogeneous Heterogeneous

Heterogeneous

Formatio

™ o014 |

™ o014 |

240 m—=

var{ink) = 0.1 var{/ink) =4.5

« Underlow variance condition, the 1-unit model can reasonably capture the leakage plume of the FHM.

*  The 8-unit and 3-unit models yield more accurate leaked CO, plume predictions than the 1-unit mo?;l.
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The decreasing caprock permeability reduces CO, leakage.

Base on results of the upscaling study, the 8-unit and 3-unit models yield great accurate Leaked CO,

predictions.
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Uncertainty Results for CO,

Leakage

o> =0.1 2=1.0 =45
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Mineral Storage Modeling

Mineral
Quartz
Calcite
K-Feldspar
Kaolinite
Albite
Plagioclase
lllite
Hematite
Dawsonite
Chlorite
Siderite
Ankerite
Magnesite
Na-Smectite
Ca-Smectite
Dolomite

Formula

SiO,

CaCO;

KAISi;Og

Al,Si,O5(0OH),

NaAlSi;Og
(Nag.75,Cag.25) (Al 25,Si2.75) Og
Ko.s(MJo25, Al1.)(Algs, Siz5)O10(0OH)2
Fe,O,

NaAICO;(OH),

(Mgz 5, Fezs, Al)(Al, Siz)O1o(OH)g
FeCO,

Ca(Mg 3, Feg7)(COs),

MgCOQO,

Nao 200(Mdo.26, Al1.74)(Alo.03, Siz.97)O10(OH)2

Cag.145(Mdo 26, Al1.74)(Alg o3, Siz97)O10(OH);
(CaMg)(COs),

Init VF (%)
43.04

4.22

15.77

0

0

4.07

4.01

1.60

7.19

o O O O
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Changes in Volume Fraction
after 2000 Years

Chlorite Siderite z Magnesite

001
.0.02
S 003

* Reactive minerals in sandstone such as Chlorite can provide cations such as Mg?* and Fe?*, which are
essential chemical components for forming carbonate precipitates during GCS.

« Thereactions between cations and CO, forms carbonate minerals (e.g., siderite, magnesite and ankerite)
to trap CO, as precipitates.

* Uncertainty analysis evaluating important uncertainty factors is ongoing.
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Deep Injection

Deep injection trapping of CO, in
deep marine sediments provides
additional storage to existing
onshore capacity.

CO, can be trapped through ‘self-

sealing’ gravitational and hydrate- |\ W A~ | S _—
forming mechanisms under suitable

temperature and pressure

conditions. oil and gas pipe line in GOM (Richardson et

al., 2004, OCS Report MMS 2004-021)

Uncertainty analysis of ocean
storage in the Gulf of Mexico is
about sediment property, thermal

gradient, sea water depth, etc. ”



scCO, plumes at 1Tkm water depth

Gas Saturation: 0.04 0.08 0.1 0.14 0.18 0.2 0.24 0.28 0.3 Gas Saturation;: 0.05 0.1 0.15 0.2 0.25 0.3 0.35
L —————

|

Gas Saturation: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Gas Saturation: 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

10 years 100 years

It is too shallow to develop gravity stable flow.




scCO, plumes at 3km water depth

Gas Saturation: 0.04 0.08 0.1 0.14 0.18 0.2 0.24 0.28 0.3 Gas Saturation: 0.05 0.1 0.15 0.2 0.25 0.3 0.35

—— s

Gas Saturation: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 Gas Saturation: 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

10 years 100 years

It is sufficient to develop gravity stable flow.




Dissolved CO, plumes at 1km water depth

Liquid Mole Fraction CO2: 0.005 0.01 0.015 0.02 0.025 0.03 0.035 Liquid Mole Fraction CO2: 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Liquid Mole Fraction CO2: 0.005 0.01 0.015 0.02 0.025 0.03 0.035 Liquid Mole Fraction CO2: 0.005 0.01 0.015 0.02 0.025 0.03 0.035

100 years




Dissolved CO, plumes for 3km case

Liquid Mole Fraction CO2: 0.005 0.01 0.015 0.02 0.025 0.03 0.035 Liquid Mole Fraction CO2: 0.005 0.01 0.015 0.02 0.025 0.03 0.035

. :

Liquid Mole Fraction CO2: 0.005 0.01 0.015 0.02 0.025 0.03 0.035 Liquid Mole Fraction CO2: 0.005 0.01 0.015 0.02 0.025 0.03 0.035

100 years




Summary

Global upscaling computes equivalent ks for the geologic models with decreasing k resolution;
for increasing reservoir In(k) variances (0.1, 1.0, 4.5), FHM pressure and flow rate are captured
well by the geologic models, but errors increase with variance.

When the variance of In(k) is low, the 1-unit model yields similar dissolution and leakage plumes
as the FHM. When the variance of In(k) is high, the 3-unit and 8-unit models provide more
accurate predictions on CO, dissolution and leakage.

Experimental design analysis suggests that for the uncertainty factors evaluated, brine salinity
is the single most influential factor impacting CO, dissolution storage, while caprock
permeability is the most influential factor impacting CO, leakage to the caprock.

Reactions between cations and dissolved CO, forms carbonate mineral precipitates (i.e.,
Siderite and Magnesite), leading to mineral storage. High degree of uncertainty exists in its
prediction.

When the water depth is 1km, it is too shallow to develop gravity stable flow. When the water
depth is 3km, itis sufficient to develop gravity stable flow. However, the magnitude of sediment
permeabity can impact storage security: when k<10-"> m? (clay sediment), CO, is also gravity
neutral for all water depths, and for all geothermal gradient.
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Appendix

— The following slides will not be discussed during
the presentation, but are mandatory
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FHM v. 1-Unit Model: &%, =0.1
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FHM v. 1-Unit Model: 0?,,.=4.5
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An example 1-Unit model run for CO2 storage modeling simulated on the Yellowstone supercomputer. The
problem domain is 7000 m x 7000 m x 250 m. Shown at 100 years for an isosurface of 0.0125 (mole
fraction) of dissolved CO2. CO2 is injected at a depth of 50 m below the top at the center of the xy-domain
for 20 years. The grid 1s 160 x 160 x 25 =0.64 million cells.

250
200
150

100
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PFLOTRAN Scaling on Yellowstone

1000 ¢ ' | | I
: PFLOTRAN
Yellowstone: GNU 4.7.2 — i
Yellowstone: Intel 12.1.5 —@
Ideal
10 Flow steps/12 Trans steps
Flow dof: 160 x 160 x 50 x 3 = 3,840,000
‘ Trans dof: 160 x 160 x 50 x 6 = 7,680,000
100 | |
- ; .
L,
)
F .
10 ¢ |
1 ' I I I I
16 32 64 128 256 512 1024

Number of Processes
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PFLOTRAN formulations

To model GCS, the following mass and energy conservation equations are solved:

d
E % Z(PasaXia) + V- Z(paxiaqa _ (ppaSaTaDaVXia) = Si (1)
a a

d .
Fra L Z(pasaUa) + (1= @)p,Cp, T|+ V- Z(QQpaHa) —AVT| =Q (2)
a a

@ denotes porosity, and p,, s, , 74, Dy, Uy H, refer to the density, saturation, tortuosity, diffusion coefficient,

internal energy, and enthalpy of fluid phase «a, respectively. Two fluid phases (CO,, brine) will be modeled. The
quantities X denote the mole fraction of component i in phase a. The quantities Cp,r and 4 denote the rock heat

capacity and conductivity, respectively. The summation is carried out over all fluid phases present in the system.
The system is assumed locally to be in thermodynamic equilibrium with temperature T(x; t) at position x and time
t. The quantity Q denotes an energy source/sink term.

The quantity S/ denotes a source/sink term for the ith primary species describing reaction with minerals given by
= =) , with stoichiometric reaction coefficients v;,, and kinetic rate I,,, for the mth mineral, taken

as positive for precipitation and negative for dissolution.

The flow rate g, of fluid phase « is given by the extended Darcy’s law: G, = —iﬁ(Vpa — Pegz), with intrinsic
a

permeability k, relative permeability k,, fluid viscosity u,, and pressure p, of phase a.
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