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Presentation Outline

» Benefits of this program to DOE’s CCUS goals
* Objectives and goals of the study

« Technical overview: integrated approach to characterizing and
assessing uncertainty relative to geologic heterogeneity

« (Conclusions
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Benefit to the Program

Creation and refinement of tools and methodologies to reduce storage site
uncertainties

= Development of a new seismic workflow analysis

» Large-scale tectonic processes characterization and their impacts on the confining
potential of sealing strata; seal bypass systems

= |dentification of the impact of well completion techniques and in-situ testing on formation
brine chemistries: introduced anthropogenic uncertainty

= Reservoir brine analysis methodologies for fluid containment, evolution, and reactions

Identification of essential steps for reducing uncertainty and maximizing storage and
containment

= |dentify primary lithologic character of best seals; diagenetic enhancement of seals
= Perform in-situ well testing for reservoir conditions, fracture gradient, etc.

= Utilization of stacked reservoir analysis for reducing sealing uncertainties, and defining
best injection targets

= Application of sensitivity analysis for highest uncertainties, periods of high risk
= Development of well design scenarios that minimize scaling risks

= |dentified critical research gaps
)
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Benefit to the Program (continued) B

Testing and validation of tools and steps on RSU site

|dentified primary and secondary seals

Implementation of new calculations for CO,-water-rock systems, high-pressure mercury
injection, interfacial tension, and wettability data that are realistic for the study site

Development of new, conservative CO, column height (plume) estimates for structural
traps/dipping strata-lowest risk volume

Refined storage estimates of Wyoming’s Paleozoic reservoirs based on new conclusions
Extrapolate geologic heterogeneity to other potential storage sites
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Project Overview:
Goals and Objectives

The objectives for the project are as follows:
1) Reduce uncertainty in estimates of CO, storage capacity at the Rock Springs Uplift;

2) Evaluate and ensure CO, storage permanence at the study site by defining sealing
potential and character, specifically with regards to geological heterogeneity; and

3) Improve the efficiency of potential storage operations by designing an optimal CO,
injection/brine production strategy.

Working towards overall goal of reducing uncertainty to the lowest
possible levels.

N CHOY WO @ NBERGY RESOURCES




G el 4,_ 4

Integrated Work Flow

Uncertainty Reduction Progression for Determining €O, Storage 7
Optimal CO, Storage Capacity/Dynamics/Permanence evaloaton
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strength & continuity)
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Data Acquisition
CO, Storage
Permanence

Insitu/Laboratory Evaluations
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Reservoir
Heterogeneity

Data Acquisition
(3-D seismic survey &
stratigraphic test well)
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|dealized lithologic seal chart, sealing lithology from this study are highlighted in red

Figure modified from IEAGHG, March 2009 'h]
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Seal Bypass Systems

Method: Reflection continuity analysis of seismic data correlated with regional geologic
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Seal Bypass Systems

Curvature Analysis: Interpreting Fold, Joint, and Fracture Systems in Horizon Slices

Preliminary Analysis Interpreted Slices
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Seal Bypass Systéms

Outcrop Study of Joint and Fracture Systems in Cretaceous Sandstones: Study Site

Dominant joint/fracture systems formed during the Laramide —related to flexure of sediments on the
flank of the RSU
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Seal Bypass Systems

Coherency Analysis: Interpreting Anomalous (non-lateral) Features in Horizon Slices

Triassic Seal Permian Seal Mississippian Reservoir
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Seal Bypass System: Karstification

Coherency Analysis: Interpreting Anomalous (non-lateral) Features in Vertical Sections

Madison horizon

Rock Integrity
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Seal Bypass System: Heterogeneity Arralysis

Spectrogram Analysis: 1-D to 2-D Transformation for Lithological Heterogeneity
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Tihology, | peptn nzRt oHmV Wavelengtn, feat [logarithmic scale] Lihoogy, | peptnfmy | ™ Pem Warvslocigth, fest [logarithmiciscale]
il 10 3 120 Stratigraphy [) 15 10 30 100
<800 o 200 9800 =

; ' m
f 9900 4
€800 Ty
v .14 + '|‘ 4
10000 10000 ‘?
| A 3
10100 - - 3 10100 T
lone, 3 k.
10200 . - i ‘
10200 — 10300 —
| N
10400 T 10400 ﬁ
10500 4 = 10 o
i 3 3 !
10600 “‘ ! 10600 ;
i1 g i'h /.
1000 10700
i ‘ lr
10800 : 10800 !
I '\
F gt - 144
10500 = 7= 10%00 ¥ 73
| o —
4 - '
11000 vy ¢ L il ; (
— mite I - - | 1
11100 2 s + S & 11100 ’.“ i q‘
1 +
! s r N 12
5 - 11200 5

E» i -
11300 - = — =

14 3 =
11400 T teE - ~
| JR 0 5 2
11500 ! + L -
| ‘f 2
11600 T
11700 fl 1 DL TR ;0“
e n
1 LR
o0 L X e
11900 I ;s 3 2) High
- Hiif i i
12000 - - - -
A -1 | Normalized
12100 q - Spectral
N THTON AR (e Amplitude
12200 i TS N

- b
3 e ll
12300 — -

L

Ajsuaboualjay moT

i

High

3
Normalized
Ny | Spectral
R
-
-

Amplitude

N CHOY WO @ NBERGY RESOURCES




Theory of Spectrogram Analysis B

« ASPECTROGRAM of a well log is a visual representation of the spectrum of spatial
wavenumbers (wavelengths) as they vary with depth. The algorithmic instrument
used for spectrogram calculation is direct Fourier transform. Computationally, the
Fourier transforms are done continuously at every depth sample with a set of log data
in parametrically defined windows. The transformed results obtained for different size
of spatial windows are stacked together and normalized. This technique allows to
bypass the Heisenberg's uncertainty principle, and to provide the balanced resolution
(both in depth and wavenumber). Depending on the geological task, the balancing
factor can be set to improve either depth or wavelength resolution.
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Oil and Gas Fields in the Rock Springs Uplift Area
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Regional
petrophysical
evaluation of
targeted seals
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Petrographic correlations S
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Porosity vs Permeability to Air
Reservoir Net Confining Stress
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Depositional and diagenetic history has increased sealingpotential
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Evaluation of seal failure

Two main mechanical failures are recognized to i |
occur during CO, injection, tensile fracturing and o5k Calcite
shear slip of pre-existing fracturing (Rohmer and
Seyedi, 2010). Geochemical conceptual models ol _
have been developed to represent these failures
scenarios. — 15 —
Dolomite-ord
In the result of seal failure it is estimated that: . -]
 pHincreases from 4.5 to >7 1
« Calcite, and some dolomite will precipitate s -
« Calcite precipitation may increase the original Quartz oot
calcite volume in the fracture by 200%, T S s 4 s e T 5 o
suggesting that fractures would fill relatively Ron progress
quickly

These estimations are consistent with
observations made on the RSU core; calcite filled
fractures in the core suggest high pCO, fluids
have moved through the system and calcite has
dropped out.
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Optimized water production engineering
Potential for scaling at all depths
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Well sizing, scale modeling and corrosion analysis
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of , Design: scale and corrosion

Surface
2000 ft MD
length 2000 ft

2000 ft

A

Top (ft) | Bottom
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000
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Surface 10.75 in 0 2,000
Production Casing 7.625in 0 11,505
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Weber Formation Injection
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thickness 30 ft

|Madison Formation Injection
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|thickness 90 ft
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Sensitivity analysis

> > s OV
"__"",,_.—-—-"? X
Denominator_CO2 Calurmn _Height > /\
ensity

Result1 CO2_Column_PROBABILITy

=2

CO2_column_Height_ContactAngle

C0O2_Column_Height
> f 1=
X
.@ Numerator_C0O2 \
Cap_Rock
> B>
P e
37 |»

Pd_seal x(:) [ L

RESULTS_Seal_Pd
CO2_Column_Height_Res_IFT

,@ Seal_Pd__PROBABILITY
GoldSim Run Controller —

Interfacial_Tension & V\/\' v,?:::v:;:n =
AN

Sealing_Capacity

ORF ZE NNERGY RESOURCES




Sensitivity analysis
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IFT of seals in a multi-phase fluid regime introduces the most uncertainty relative to containment
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Updated dynamic plume model

Property color key
P Units: Unknown
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Irregular shape of the CO, plume because of the reservoir heterogeneity/local structure.
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Quaternary fault interferes with the plume.
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Column height calculations; reassessing the CO,-H,0-Brine system

Oil/Gas/C0O2 Column Height of Confining Layers, RSU
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Verification of the integrity of the confining layers - injected CO, is trapped below
the upper most portion of the Madison Limestone and the Amsden Formation.

FEHM Simulation Results for the Madison Limestone, RSU
Homogeneous Porosity/Permeability Rock/Fluid Volume
Porosity 10%, Permeability 10 md, 50 Mt/50 years
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.
R
New CO, plume estimates

1.6 mile plume radius at the study
site before plume risks
approaching column height max
(450’). Identified as red circle.

An estimated total of 25MT of CO,
could be conservatively stored at
the study site.

Additional storage on the RSU
could be implemented, with careful
consideration of overlap to
decrease the risk of seal failure.
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Accomplishments to Date

= |dentification of analysis crucial to determining seal assessments relative to
CO, injection capacities; identified the seal variables with the highest
uncertainties and primary and secondary seals

= Development of new, conservative CO, column height estimates for dipping
Paleozoic strata in southwest Wyoming; relevant to all structural traps

= Development of methodologies for utilizing limited subsurface data and
stacked reservoirs for reducing regional sealing uncertainties

= Development of well design scenarios that minimizes scaling risks at the site

» Refined storage estimates of Wyoming’'s Paleozoic reservoirs relative to new
findings

@
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Research gaps

« Realistic column height calculations: lack of IFT data on sealing
lithologies

« Lack of comprehensive, pressurized-deep brine
geochemical/isotopic lab

« Unified pressure mitigation techniques for pressure control
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Conclusions

The study site in southwest Wyoming can retain injection volumes
with 99% certainty relative to sealing strata data

— Multiple primary and sealing strata with minimal permeability and characterized
lithologies (i.e. diagenetic effects, mechanical properties, etc.)

— Non-communicable reservoir fluid systems (isotopes, geochemistry, fluid
migration histories, in-situ pressure tests)

— Geologically old seal bypass systems up-dip, less risk
Refined injection and storage model estimates for the study site

relative to the lowest possible uncertainties and risk suggest a
holding capacity of 25MT

Development of integrated production/injection strategies has
optimized storage capabilities at the study site

Highest risk introduced during injection phase: robust reservoir
pressure management plan significantly reduces the risk of seal
failure

@
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Summary

Ensuring storage permanence; transferrable conclusions for
reducing the uncertainties of sealing systems

Stacked reservoir systems ideal for sites with limited data

Characterization of geologic heterogeneity, geochemistry, and paragenetic history
is necessary for lateral seal evaluations

Seismic derivation of seal bypass systems coupled with geologic interpretation
will identify primary structural risks

Reservoir fluid analysis will identify interconnectivity of stacked reservoirs
Accurate IFT analysis is critical for true holding capacity estimates
Storage in dipping strata will impact column height estimates

Geologic heterogeneity assessments are critical for accurate storage estimates
and injected fluid responses

Highest/uncertainty risk introduced during injection phase
— Arobust reservoir pressure management plan will greatly reduce the risk of

sakage -
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[ Task BP1 BP2 BP3
Collaboration 2012 2013 2014 2015
Gantt Chart 2|3/4|5/6/7]0| N M J M J M
1|Project N & Planning - $360,718
1.1 |Project Plan
* |Revised project 1t plan - COMPLETED
1.2 |Collaboration Meetings
* _|Kick Off Meeting - COMPLETED
* |Yearly Meeting - COMPLETED EARLY
* |Yearly Meeting
* |Yearly Meeting
1.3 |Reporting
* _|Final report
1.4 |Project Management
hysical of the Rock Springs Uplift based on seismic attributes - $88,943
2.1 |Determine target formation tops - COMPLETED X X X
2.2 [Track the i ified seismic horizons - COMPLETED x | x| |x
2.3 |Prepare volumetric seismic attributes for 3-D survey - BEGAN EARLY - COMPLETED X X X
* |Complete volumetric seismic attributes for Jim Bridger 3-D survey - COMPLETED X
2.4 |Investigate and identify seismic attributes for seal characterization - COMPLETED X X X
2.5 |Prepare horizon maps X X X
* |Complete horizon maps showing seismic attribute variations along confining layers and quick look report X
ical and ical characterization of confining lithologies using laboratory measurements - $157,074
3.1 |Perform shear strength tests - COMPLETED X
3.2 |Perform capillary pressure tests for displacement pressure and sealing capacity) - COMPLETED X
* |Complete geochemical, mineralogical and isotopic laboratory tests and quick look report - COMPLETED X
3.3 |Measure porosity and permeability - BEGAN EARLY X
3.4 |Analyze and define petrographic geochemical and mineralogical properties - COMPLETED X
3.5 [Locate and evaluate other available core samples - COMPLETED X
* |Locate and analyze iti core data available for target area X
3.6 |Perform petrophysical analysis of well logs - BEGAN EARLY x| [ x]x]x|x
* |Integrate rock property data into tasks 2, 4, 5, 6 - BEGAN EARLY x| x| x| x| x
* |Complete report detailing character and rock properties of targeted confining lithol X
3.7 |Prioritize rock evaluation criteria for Best Practices Manual X
4|Characterize formation fluids to determine hydraulic isolation of target formation - $116,392
4.1 |Perform isotopic analysis - COMPLETED X
4.2 |Perform geochemical analysis - COMPLETED X
* |Complete interpretation of formation fluid laboratory results and quick look report - COMPLETED X
4.3 |Define the hydraulic isolation of the target reservoir X X
4.4 |Perform reaction path modeling - COMPLETED x|x x [x |x
* |Creation of reaction path model - COMPLETED X
* | Describe water quality parameters needed for water-treatment facilities of the produced water - COMPLETED X
4.5 |Evaluate geochemical reactions associated with seal failure X X |x |x
* |Evaulation of water/rock interactions for various seal failure scenarios X
* |Isotopic analyses of the formation fluid and quick look report
4.6 |Evaluate techniques for use in Best Practices Manual x|x X |x |x
to evaluate seal integrity, injection rate, and pressure -$139,970
5.1 | Detailed 3-D geological property models for targeted reservoir and confining formations x[x % |x |x [x
* |Complete construction of detailed 3-D geological property models and quick look report - COMPLETED X
5.2 [Performance of diverse injection scenarios XX [x [x |x |x
* |Create performance 1ts of diverse injection scenarios X
5.3 |Evaluate the importance and effects of numerical si ion parameters - BEGAN EARLY x[x [x |x |x [x -
* |Prioritize importance and effects of parameters for numerical si i X
5.4 | Best Practices Manual for numerical simulations of CO2 storage X[x [x |x |x [x
of formation brine prodi to assess wellbore scaling/well integrity and surface treatment - $142,872
6.1 |Simulate and evaluate wellbore scaling issues X [x [x X
6.2 |Evalute the effects of brine chemistry on well construction and casing integrity X [x [x X
* |Complete geochemical model of formation fluids under various constraints X
6.3 |Evaluate the effects of brine chemistry on machinery associated with produced water treatment X [x [x X
* |Define and design best possible wellbore and water treatment facility and quick look report X
6.4 |Integrate and prioritize modeling results and design data from subtasks 6.1 - 6.3 into the Best Practices Manual X [x [x X
7|Rock Springs Uplift integrated geological and geophysical CO2 storage
*_|List of formations for evaluation - COMPLETED
g

| Complete comprehensive strategy for the storage of CO2 in Wyoming's Paleozoic Stratigraphic Section

S

* Denotes milestone

Red bar denotes completed tasks/subtasks

Yellow bar denotes continuing progress through December 31, 2013

Green bar denotes tasks/subtasks began earlier than scheduled and continuing progress of those tasks.
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21st Annual Geological Society of America — Denver, CO — October 2013
Abstracts presented:

* An Integrative Strategy to Increase the Economic Feasibility of CO2 sequestration: Mining Brines from
Saline Storage Reservoirs

«  Geochemical evolution of deep saline brines from Paleozoic reservoirs in southwest Wyoming;
implications for potential CO2 sequestration

Thirteenth Annual Carbon Capture, Utilization and Storage Conference — Pittsburgh, PA— April 2014

Abstracts presented:

«  Geologic Controls on Sealing Capacity; Defining Heterogeneity Relative to Long-Term CO, Storage
Potential in Wyoming

»  The Geochemical Characterization of Reservoir Fluids: Defining the Fluid and Rock System and
Identifying Changes to Baseline Conditions Due to Well Completion

«  Geologic and Stratigraphic Characteristics of Multiple Stacked Sealing Formations at the Rock Springs
Uplift, Wyoming
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