Illinois Basin – Decatur Project

Sallie E. Greenberg, Ph.D. and the MGSC Project Team
Advanced Energy Technology Initiative
University of Illinois – Illinois State Geological Survey

18 August 2015 – Pittsburgh, PA
Illinois Basin – Decatur Project
- Large-scale demonstration
- Volume: 1 million tonnes
- Injection period: 3 years
- Injection rate: 1,000 tonnes/d
- Compression capacity: 1,100 tonnes/day
- Status: Post-injection monitoring

Illinois Industrial CCS Project
- Industrial-scale
- Volume: 5 million tonnes
- Injection period: 3 years
- Injection rate: 3,000 tons/d
- Compression capacity: 2,200 tonnes/day
- Status: Pre-injection monitoring
IBDP Wells (Series 1) and ICCS wells (Series 2) at ADM in Decatur, Illinois

Class VI permit issued Sep 2014

Class VI permit issued Feb 2015
A collaboration of the Midwest Geological Sequestration Consortium, the Archer Daniels Midland Company (ADM), Schlumberger Carbon Services, and other subcontractors to inject 1 million metric tons of anthropogenic carbon dioxide at a depth of 7,000 +/- ft (2,000 +/- m) to test geological carbon sequestration in a saline reservoir at a site in Decatur, IL

- Prove injectivity and capacity
- Demonstrate security of injection zone
- Contribution to best practices
Illinois Basin Stratigraphic Column

- Mount Simon Storage Capacity:
 - 11 (E=0.4%) to 150 (E=5.5%) billion metric tons

- Pennsylvanian coal seams

- New Albany Shale back-up seals

- Maquoketa Shale seal

- St. Peter Sandstone reservoir

- Eau Claire Shale

- Mt. Simon Sandstone
Illinois Basin –
Decatur Project Site
(on ADM industrial site)

A Dehydration/ compression facility location
B Pipeline route (1.9 km)
C Injection well site
D Verification/ monitoring well site
E Geophone well
Operational Injection: 17 November 2011

- **IBDP** is the first 1 million tonne carbon capture and storage project from a biofuel facility in the US
- Injection completed November 2014
- Intensive post-injection monitoring under MGSC through 2017

Total Injection (26 November 2014): 999,215 tonnes
Current Affairs

• MGSC undergoing transition:
 – Shift in leadership
 – Shift in project personnel
 – Shift from operations to post-injection monitoring
 – Shift to knowledge and data sharing
 – Preparations for final activities

• MGSC BP5 focus:
 – Outreach (integrate STEP)
 – Post-injection monitoring and modeling
 – Project Assessment
 • Evaluation, data analysis, knowledge sharing, capacity building
 • Participate in national and international technology transfer
 – Post-test Site Planning
Post-Injection Activities

- 3D Surface Seismic Survey – January 2015
 - Processing nearly complete
- Post-injection VSP, permit interim period – January 2015
 - Working to improve comparisons between repeat VSPs
- Post-injection near surface monitoring
 - Moving from injection monitoring to reduced program
- Knowledge and data sharing best practices
 - Publications
 - National and international research collaborations
 - Collective data sets
 - Teaching data sets
Aligning Knowledge and Data Sharing Opportunities

- International Cooperation
- Collaborative Research
- Scientific Potential
Working to Align Data Sharing Goals and Achieve Success

Vetting Data
- Complete 3D seismic processing
- Review data
- Verify data against previous data sets
- Ground-truthing

Integrating Data
- Microseismic data dependent upon 3D surface seismic
- Research underway in multiple projects
- Publications being prepared

Defining Research Questions
- What are best practices for releasing and managing data sharing?
- Can VSP data be improved?
- Are models accurately reflecting observed activity?

Preparing Data for Release
- Vetting data
- Defining data sets
- Ensuring quality
- Maintaining integrity

Data Sharing
- Planned research release
- Coincide with publication release
- Align with larger initiatives

Data Sharing as Best Practices
Outcome: Stakeholder engagement strategy that resonates with the Public

- Began public engagement early
- Made public engagement a priority
- Created, evaluated, and refined communications plan
- Integrated public engagement into project management
- Made sufficient investment in time and resources
- Understood and consulted community
- Maintained flexibility and diligence
How do you know the CO$_2$ is staying where you put it?
What happens in the event of earthquakes?
 - Induced seismicity
 - Fracture and catastrophic release of stored CO$_2$
Where does formation water go when CO$_2$ is injected?
 - Increased pressure
Does CO$_2$ injection fracture rocks during injection?
What are long-term implications of project?
Who is liable if something goes wrong with the project?
How do you know it is safe?
Outcome: We Better Understand Longitudinal Risk Profile of Carbon Capture and Storage Workflow

- Discussion and evaluation in plenary sessions preferable to breakout sessions. Led to fully involving experts, wider range of views and, greater discussion.

- Risk profile can change significantly over time and must be continually reviewed.

- Self-rating of expertise level led greater understanding of where expert views diverged from well-informed non-experts.

- Scenarios with very high worst-case severities must be treated differently from scenarios whose high risk results from higher likelihood.
Illinois Basin – Decatur Project Workflow

- Regional Characterization
- Site assessment
- Outreach and public engagement
- Permitting and building the IBDP test site
- Collect and analyze key monitoring baseline data
- Injection, monitoring, and modeling
- Post-injection monitoring, modeling, and analysis
- Research collaborations, knowledge sharing

Completed | On-going | Current activities | Upcoming activities
IBDP Environmental Monitoring Framework

<table>
<thead>
<tr>
<th>Near Surface</th>
<th>Deep Subsurface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmos.</td>
<td></td>
</tr>
<tr>
<td>Soil and vadose zone</td>
<td>Shallow groundwater</td>
</tr>
<tr>
<td>Eddy covariance</td>
<td>Geophysical surveys</td>
</tr>
<tr>
<td>Meteorological conditions</td>
<td>InSAR and GPS</td>
</tr>
<tr>
<td>Ambient CO₂</td>
<td>Soil gases</td>
</tr>
<tr>
<td>Tunable diode laser for CO₂</td>
<td>Soil CO₂ flux</td>
</tr>
<tr>
<td></td>
<td>Geophysical surveys</td>
</tr>
<tr>
<td></td>
<td>P/T monitoring</td>
</tr>
<tr>
<td>Injection zone</td>
<td></td>
</tr>
<tr>
<td>Above seal</td>
<td>Geophysical surveys</td>
</tr>
<tr>
<td></td>
<td>P/T monitoring</td>
</tr>
<tr>
<td></td>
<td>Geophysical surveys</td>
</tr>
<tr>
<td></td>
<td>P/T monitoring</td>
</tr>
<tr>
<td></td>
<td>Geophysical surveys</td>
</tr>
<tr>
<td></td>
<td>P/T monitoring</td>
</tr>
</tbody>
</table>
IBDP Risk Assessment and Project Uncertainties

Initial Risk Assessment
- Research and Operational Activities
- Communication, Education, and Engagement

Interim Risk Assessment
- Revisit Communication, Risk Management, and Crisis Communication

Communication Plan & Implement
- 2008
- Geologic Uncertainty
- Operational Uncertainty
- Regulatory Uncertainty
- Social Uncertainty

Communication and Crisis Management
- 2009
- Regulatory Uncertainty
- Change in Scope
- Long-term Funding
- Challenges in Knowledge Sharing
- Complacency Potential
- Institutional Memory Loss

Complete Injection & Post-Injection Monitoring
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
At 500 m in total thickness at Decatur, the Mount Simon Sandstone has been shown to be a substantial storage resource meeting criteria of injectability and storage capacity.

Storage capacity of 11 (P_{90}) to 150 (P_{10}) billion metric tons have been assessed for the entire Illinois Basin.

Intervals of tens of meters of exceptional reservoir quality in the Lower Mount Simon show a combination of primary and secondary porosity in a sand-rich fluvial system.

Original depositional units are well-connected as flow units based on pressure response in the injection and verification wells.
Lower Mt. Simon Fluvial Deposits

- Braid Plain and alluvial fan deposits; poorly to mod. sorted, cross-bedded sandstone to pebble conglomerate. Porosity up to 30% and 500mD permeability

- Fluvial flood plain and playa deposits; planar and ripple laminated mudstones and siltstones. Tight and impermeable

from Freiburg, ISGS
Mount Simon Depositional Analogue: Brahmaputra River System
Eroded Precambrian surface

from Leetaru, ISGS
Pulsed neutron logs (Schlumberger RST® Log) help estimate the depth, thickness and saturation of CO₂ around injection and verification wells and arrival time at verification well.

CO₂ reached verification well in March 2012 in Zone 3 and July 2012 in Zone 2, much sooner than expected.

Revised reservoir simulation, including permeability distribution, was calibrated to CO₂ arrival at VW1.

Pressure distribution in lower Mt. Simon shows rapid in-zone response to injection variations.

Outcome: We Better Understand Reservoir Fluid Distribution and Impacts of Heterogeneity on Pressure
Repeat Pulsed Neutron* Logging has Defined CO$_2$ Distribution at the Injection and Observation Wells

 CCS1

 VW1

 Pre-injection

 Five post-injection logging runs: March, July, and November 2012; July 2013; July 2014

*Schlumberger Reservoir Saturation Tool (RST)
Injection zone Increase: 144 psi (9.9 bar)

Zone 5 increase: 21 psi (1.5 bar)

263 ft (80.2 m) above
Mudstone Baffle Between Injection Zones

6,863-6,863.25
Porosity: 1.5%

\(K_v \): <0.01 mD

\(K_h \): 4.13 mD in siltstone laminae
Outcome: Microseismic Activity Has Supported Insight Into Reservoir Pressure Distribution

- Microseismic activity started only after injection began at site.
- Clusters north of injection well first to occur and lie over Precambrian topography that may have localized planes of weakness due to compaction.
- Cluster orientation consistent with northeast principal stress direction.
- No pre-existing fault planes seen in 3D seismic.
- Timing of events ties to pressure propagation.
- Most events are in the pre-Mt. Simon and Precambrian basement; none are above the lower Mt. Simon.
Microseismic Events Began in January 2012
• Jun-Aug 2013 (avg) = 89 located events/month
• Mean moment magnitude: -0.98
• Max. event for three months: +0.25

• Jun 2015: 12 detected events
 4 located events
• Mean moment magnitude: -1.23
• Max. event for three months: -0.2

Maximum event = +1.02 in September 2013

from Schlumberger Carbon Services
Microseismic Cluster Activity: Cluster Locations in Relation to Surface Features
Microseismic Cluster Activity: Cluster Locations in Relation to Surface Features

Moment Magnitude

from Schlumberger Carbon Services
Microseismic Cluster Activity: Relationship to Basement Structure

from Schlumberger Carbon Services
Microseismic events in relation to stratigraphy

Majority of events are in the pre Mt Simon and Precambrian
Microseismic events in relation to stratigraphy

Majority of events are in the pre Mt Simon and Precambrian
Pre-Mt. Simon Sandstone

- Unconformable contact with Mt. Simon
- Sandstones and pebble conglomerates. Porosity <8% and perm. <1 md.
- Bioturbation throughout suggesting marine environment and dating Pre-Mt. Simon at Cambrian from Freiburg, ISGS
Precambrian Basement

- Upper Basement is Rhyolite
- Distinct Weathering Profile. Fractured
- Dated at 1.45 Ga

from Freiburg, ISGS
Outcome: Successful permitting of UIC wells for two projects provides precedent for future projects

- Proactively engage regulators
 - Engage early
 - Familiarize yourself with regulatory time clock
- Expect technical collaboration between USEPA and applicant
- USEPA focused on making technical, risk-based permitting decisions
- Modeling should be discussed in detail with USEPA prior to development and verification
- Start early
- Seek out examples (publicly available)
- Provide balance of information – detail important, but can distract
- Remain flexible
Plume Monitoring

<table>
<thead>
<tr>
<th>Target Formation</th>
<th>Monitoring Activity</th>
<th>Monitoring Location</th>
<th>Frequency: Interim Period</th>
<th>Frequency: CCS2 Injection Phase</th>
<th>Frequency: CCS2 Post-Injection Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Plume Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt. Simon</td>
<td>Fluid Sampling</td>
<td>VW1</td>
<td>Once</td>
<td>Year 1-3: Annual</td>
<td>Year 4-5: None</td>
</tr>
<tr>
<td>Mt. Simon</td>
<td>Fluid Sampling</td>
<td>VW2</td>
<td>None</td>
<td>Annual</td>
<td>Annual</td>
</tr>
<tr>
<td>Indirect Plume Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt. Simon</td>
<td>Pulse Neutron logging/ RST</td>
<td>VW1 VW2</td>
<td>Once</td>
<td>Year 2, Year 4</td>
<td>Year 1, 3, 5, 7, 10</td>
</tr>
<tr>
<td>Mt. Simon</td>
<td>Pulse Neutron logging/ RST</td>
<td>CCS1 CCS2</td>
<td>Once</td>
<td>Year 2, Year 4</td>
<td>Year 1, 3, 5, 7, 10</td>
</tr>
</tbody>
</table>
Seismic Monitoring

<table>
<thead>
<tr>
<th>Timing</th>
<th>Survey</th>
<th>Extent/Coverage/Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS1 Injection Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Baseline 3D Surface Seismic Survey</td>
<td>Extent = 2,600 Acres Fold Coverage = 2,000 Acres</td>
</tr>
<tr>
<td>2011</td>
<td>Baseline 3D Surface Seismic Survey</td>
<td>Extent = 2,600 Acres Fold Coverage = 2,000 Acres</td>
</tr>
<tr>
<td>2011</td>
<td>Baseline GM1 3D VSP</td>
<td>Resolution = 30 Acres</td>
</tr>
<tr>
<td>2012</td>
<td>GM1 3D VSP</td>
<td>Resolution = 30 Acres</td>
</tr>
<tr>
<td>2013</td>
<td>GM1 3D VSP</td>
<td>Resolution = 30 Acres</td>
</tr>
<tr>
<td>2014</td>
<td>GM1 3D VSP</td>
<td>Resolution = 30 Acres</td>
</tr>
<tr>
<td>CCS1 Post-Injection Phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Expanded 3D Surface Seismic Survey</td>
<td>Extent = 3,000 Acres Fold Coverage = 2,200 Acres</td>
</tr>
<tr>
<td>2020</td>
<td>Time Lapse Surface Seismic Survey</td>
<td>Extent = 2,000 Acres Fold Coverage = 600 Acres</td>
</tr>
<tr>
<td>2030</td>
<td>Time Lapse Surface Seismic Survey</td>
<td>Extent = 2,000 Acres Fold Coverage = 600 Acres</td>
</tr>
</tbody>
</table>
Pressure-Front Monitoring

<table>
<thead>
<tr>
<th>Target Formation</th>
<th>Monitoring Activity</th>
<th>Monitoring Location</th>
<th>Frequency: Interim Period</th>
<th>Frequency: CCS2 Injection Phase</th>
<th>Frequency: CCS2 Post-Injection Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Simon</td>
<td>Pressure/temperature monitoring</td>
<td>VW1</td>
<td>Continuous</td>
<td>Y1-3: Continuous Y 4-5: None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VW2</td>
<td>None</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCS1</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Y 1-3: Continuous Y 4-10: Annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCS2</td>
<td>None</td>
<td>Continuous</td>
<td>Y 1-3: Continuous Y 4-10: Annual</td>
</tr>
<tr>
<td>Mt. Simon</td>
<td>DTS</td>
<td>CCS1</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Y 1: Continuous Y 2-10: None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCS2</td>
<td>None</td>
<td>Continuous</td>
<td>Y 1: Continuous Y 2-10: Annual</td>
</tr>
<tr>
<td>Multiple</td>
<td>Passive seismic (detect M 1.0 events)</td>
<td>Borehole & surface seismic stations within AoR</td>
<td>None</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Key Operational Results – IBDP at Completion of Injection

- Mount Simon Sandstone reservoir accepted CO$_2$ more easily than expected resulting in quicker detection at verification well.
- Upward plume growth limited by reservoir permeability stratification, as modeled, and confirmed by pressure observations.
- Resulting plume believed thinner than expected and was not detected with a 3D vertical seismic profile until April 2013.
- Mt. Simon 200,000 ppm brine is more corrosive than expected.
- With 999,215 tonnes injected, CO$_2$ remains in lowermost Mt. Simon; internal reservoir heterogeneity affecting CO$_2$ distribution.
- No CO$_2$ leakage or adverse impacts detected to date.
- Second project (ICCS) will add opportunity to monitor two plumes.
Publication Plan – 2015 to 2016 (subject to change)

• International Journal of Greenhouse Gas Control:
 – Special Volume
 – 4 papers on microseismic research at IBDP
 – Publish Q1 or Q2 of 2016

• American Geophysical Union:
 – Geophysical Monitoring for Geologic Sequestration of Carbon Dioxide
 – 2 book chapters
 • Microseismic Monitoring, Event Location, and Focal Mechanisms:
 A Case Study of the Illinois Basin – Decatur Project
 • Seismic Data Integration for Site Characterization and Monitoring.

• Pre-Cambrian Basin Geology
• Illinois Basin Tectonic Regime
• Open file reports
At end of PISC period:

- Operator submits a demonstration of non-endangerment of USDW to UIC Program Director (40 CFR 146.93(b)(2) or (3)
- Based on evaluation of site monitoring data in conjunction with computational model
- Uses site-specific conditions to confirm and demonstrate non-endangerment
- Includes:
 - Summary of existing monitoring data
 - Comparison of monitoring data and model predictions and model documentation
 - Evaluation of CO$_2$ plume
 - Evaluation of mobilized fluids
 - Evaluation of reservoir pressure
 - Evaluation of potential conduits for fluid movement
 - Evaluation of passive seismic data