SOFC Cathode ORR Mechanisms Under Real World Conditions

US Department of Energy, National Energy Technology Laboratory, Contract No. DEFE0009084

Eric D. Wachsman, Yi-Lin Huang, Christopher Pellegrinelli, Joshua Tallion, & Lourdes Salamanca-Riba

University of Maryland Energy Research Center www.energy.umd.edu

University of Maryland, College Park, USA

Limitation of ORR from EIS

Experimental vs. Real Microstructures

Experimental vs. Real Ambient Air

Linde Synthetic Air

Fundamental ORR Mechanisms - Catalysis

- Switch gas to separate solid vs gas species contribution to mechanism

Fundamental ORR Mechanisms - Catalysis

ORR Reaction Mechanisms in Presence of H₂O and CO₂

$$O_{ads} + V_o \stackrel{k_2}{\underset{k_{-2}}{\longleftrightarrow}} s + O_o^x$$

MARYLAND

Isotope Saturated Temperature Programmed Exchange (ISTPX)

IIE - Probes the impact of contaminants on gas phase ¹⁸O₂ exchange with cathode surface ¹⁸O¹⁸O C¹⁶O¹⁶O H₂¹⁶O

ISTPX - Probes competitive ORR in presence of contaminants on ¹⁸O-labeled cathode surface

Allows experiment in ambient P₀₂ without saturating mass spectrometer

Interaction Between O₂, CO₂ and LSCF Surface

Interaction Between O₂, CO₂ and LSCF Surface

- CO₂ exchanges preferentially with lattice at lower temperature:
- initially exchanging only single
 "O" (atomic)
- then both "O" (molecular)
- then at same rate as O₂

ISTPX of LSCF with 2500ppm CO₂ at ambient PO₂

Competitive exchange of CO₂ vs O₂ with lattice ¹⁸O at ambient PO₂

O₂ exchange with lattice ¹⁸O

200

300 400

500

Temperature (°C)

600

700 800

ISTPX of LSCF and LSM with 2500ppm CO₂ at ambient PO₂

 CO_2 and O_2 exchange with lattice ¹⁸O in 20% O_2

LSM LSCF Temperature (°C) 300 400 500 600 Temperature (°C 300 400 500 600 **O**2 Concentration (ppm) **C**¹⁶**O**₂ **O**₂ 2000 Concentration 1500 Concentration (ppm) Concentration (ppm) C¹⁶O₂ C¹⁸O₂ C¹⁶O¹⁸O (ppm) **O**₂ C16O18O **0**18 **h**18**()** Temperature (°C) Temperature (°C)

LSM also has significant CO₂ exchange at low PO₂.

However, for both as PO₂ increases relative CO₂ exchange decreases.

🥬 MARYLAND

ISTPX of LSCF in 25000ppm O₂ with 6000ppm D₂O

O₂ exchange with lattice ¹⁸O

Mass of:
$${}^{18}O = 18$$

 $H_2{}^{16}O = 18$
 $D_2{}^{16}O = 20$
 $D_2{}^{18}O = 22$

D₂O exchange with lattice ¹⁸O

ISTPX of LSCF in 25000ppm O_2 with 6000ppm D_2O

D₂O and O₂ exchange with lattice ¹⁸O

ISTPX of LSCF in 25000ppm O₂ with 6000ppm D₂O

Temperature and PO₂ Dependence of LSCF in D₂O

Temperature and PO₂ Dependence of LSCF in D₂O

Comparison of LSCF and LSM Temp-PO₂ Dependence in D₂O

- LSCF more active toward D₂O exchange than LSM
- D₂O exchanges with LSM only at high temp in presence of O₂

Comparison of LSCF and LSM Temp-PO₂ Dependence in CO₂

Doubly Exchanged C¹⁸O¹⁸O

Comparison of ISTPX with EIS for LSCF-GDC in H_2O

MARYLAND Energy Research Center The presence of 3% H₂O effects the low frequency arc at 450° C but not at 750° C consistent with the results obtained from ISTPX.

Comparison of ISTPX with EIS for LSCF-GDC in CO₂

Effect of CO₂ and H₂O on Catalytic Activity for O₂ Dissociation

Arrhenius Plot of Steady State Concentration [¹⁶O¹⁸O] to Reciprocal Temperature

- LSCF has greater rate of O₂ dissociation than LSM
- CO₂ and H₂O decrease the rate of O₂ dissociation on LSCF
- But CO₂ and H₂O increase O₂ dissociation on LSM

Effect of Composite Cathodes on Surface Exchange

- From our previous observation LSCF-GDC and LSCF have similar exchange kinetics due to both having high oxygen vacancy concentration
- While LSM-YSZ is dramatically enhanced relative to LSM indicating greater importance of TPBs and co-existence of O-dissociation and O-incorporation phases Journal of The Electrochemical Society, 158 (3) B283-B289 (2011) 001-active-processing and society, 158 (3) B283-B289 (2011)

Surface Exchange Coefficients of Composite Cathode Materials Using In Situ Isothermal Isotope Exchange

E. N. Armstrong,** K. L. Duncan,* and E. D. Wachsman hoter

"Florida Institute for Sustainable Energy, University of Florida, Gainesville, Florida 12611, USA "University of Maryland Energy Research Center, University of Maryland, College Park, Maryland 20742, ESA

Comparison of LSCF and Composite LSCF-GDC in D₂O

Comparison of LSCF and Composite LSCF-GDC in D₂O

Comparison of LSCF and Composite LSCF-GDC in CO₂

25000ppm O₂ and 2500ppm CO₂

Comparison of LSCF and Composite LSCF-GDC in CO₂

Comparison of LSM and Composite LSM-YSZ in CO₂

25000ppm O₂ and 2500ppm CO₂

Comparison of LSM and Composite LSM-YSZ in CO₂

25000ppm O₂ and 2500ppm CO₂

- LSM-YSZ composite demonstrates much greater exchange than LSM at much lower temp for CO₂
- Composite effect for LSM-YSZ much greater than for LSCF-GDC

Comparison of LSM and Composite LSM-YSZ in D₂O

Comparison of LSM and Composite LSM-YSZ in D₂O

- LSM-YSZ composite demonstrates much greater exchange than LSM or YSZ at much lower temp for D₂O
- Composite effect for LSM-YSZ much greater than for LSCF-GDC

 Demonstrating importance of TPBs and co-existence of O-dissociation and O-incorporation phases

H₂O Impact on LSM/YSZ Microstructural Change

FIB/SEM reconstruction of LSM/YSZ cathodes aged at 800°C for 500 hrs in dry and wet (3% H_2O) air with and without polarization

Skeletonization to determine microstructural connectivity

H₂O Impact on LSM/YSZ Microstructural Change

- H₂O under cathodic polarization decreases LSM phase connectivity (ohmic impedance)
- H₂O under cathodic polarization decreases fraction of connected "active" TPBs (*non-ohmic impedance*)

H₂O Impact on LSM/YSZ Compositional Change

STEM-EDS of symmetric cell aged at 800° C for 500 hrs with one side in dry air and the other in air with 3% H₂O

STEM-EDS maps of Aged-dry SOFC cathode near electrolyte interface

•Still distinct particles of LSM and YSZ

•Perhaps more Mn distributed throughout YSZ

While morphological changes in dry air, no observed chemical change

H₂O Impact on LSM/YSZ Compositional Change

STEM-EDS of symmetric cell aged at 800° C for 500 hrs with one side in dry air and the other in air with 3% H₂O

Observed segregation of La and Mn to YSZ grain boundaries for wet aged LSM/YSZ

Conclusions/Summary

- ¹⁸O-exchange demonstrates LSCF is more active than LSM and has different ORR mechanism
- \bullet CO_2 and H_2O actively participate in ORR for both LSCF and LSM
 - Most likely influences literature k_{ex} results
- Identified temperature and gas composition regions where CO_2 and H_2O dominate O_2 surface exchange mechanism and where they are less important
 - Needs to be taken into consideration when selecting cathodes and operating conditions
- \bullet Identified composite cathode effect on O_2 surface exchange with CO_2 and H_2O
 - Particularly dramatic for LSM/YSZ
 - Indicates microstructure (e.g., TPB's) plays important role
- Ambient humidity has a direct impact on LSM/YSZ cathode microstructural and compositional changes (currently characterizing LSCF/GDC) that degrades ohmic and non-ohmic ASR
- Heterogeneous catalysis (IIE & ISTPX), polarization measurements (EIS), and microstructural characterization (FIB/SEM) are being integrated to provide fundamental understanding of cathode ORR and degradation mechanisms
 MARYLAND
 Energy Research Center
 Have recently started investigating effect of Cr