16th Annual Solid Oxide Fuel Cell (SOFC) Workshop

Grpg.@ #DE-AR0000493

Low-Cost Intermediate-Temperature Fuel-Flexible Protonic Ceramic Fuel Cell and Stack

Jianhua TONG

Ryan O'Hayre (lead PI), Neal Sullivan, Robert Braun, Sandrine Ricote

Colorado School of Mines

Golden, CO 80401, USA

jiantong@mines.edu

Conclusions New Triple Conducting Cathode Simplified Fabrication Process

Low Cost Fuel-Flexible Protonic Ceramic Fuel Cells with Excellent Low-T Performance and Durability

The Position of Our PCFC Button Cells

Outline

Triple Conducting Oxide (TCO) Cathode

Solid State Reactive Sintering Fabrication

Performance of Our PCFC Button Cells

ORR Mechanisms on PCFC Cathodes

Traditional MIEC cathode

Novel TCO cathode

[1] A. Grimaud et al, *Journal of the Electrochemical Society*, 2012, 159 (6), B683.
[2] J. Kim et al, *ChemSusChem*, 2014, 7, 2811.

Design New TCO Cathode Materials

Highly doped barium zirconate protonic ceramic materials with transition metals $\ M^{3+}$

h. h.

 $\begin{array}{cccc} Electronic & M^{4+}Proton \\ \hline conductivity & conductivity \\ BaCo_{0,4}Fe_{0,4}Zr_{0,2}Y_{0,0}O_{3-\delta} \\ BaCo_{0,4}Fe_{0,4}Zr_{0,15}Y_{0,05}O_{3-\delta} \\ BaCo_{0,4}Fe_{0,4}Zr_{0,1}Y_{0,1}O_{3-\delta} \\ BaCo_{0,4}Fe_{0,4}Zr_{0,05}Y_{0,15}O_{3-\delta} & 6 \end{array}$

Crystal Structures of Cathode Materials

EIS Spectra of BCFZY TCO Cathodes

Typical impedance spectrum (T = 750°C) of a symmetrical cell with (a) BCFZ; (b) optimized BCFZY_{0.1} cathode. ⁸

Cathode ASR for from Symmetric Cells

Cathode ASR values for the BCFZY symmetric cell in an Arrhenius diagram in air as a function of temperature.

Total Conductivity of BCFZY0.1

BCFZY0.1 exhibits electronic conduction above 475C with low activation ₁₀ energy

Proton Concentration

0.21%-1.9% mol H+/mol BCFZY0.1.

Confirmed triple conductivities (electron, oxygen ion, and proton.

Outline

Triple Conducting Oxide (TCO) Cathode

Solid State Reactive Sintering Fabrication

Performance of Our PCFC Button Cells

Solid State Reactive Sintering Fabrication

Definition of Solid State Reactive Sintering

BZY20 As An Example

► Ball Milling – 24h SSRS

Cost-effective raw materials such as carbonates and oxides

Small amount of effective sintering additive (e.g., NiO, CuO)

Single high-temperature processing step

Combination of phase formation, ceramic densification, and grain growth

Sol-gel	\$1608/kg	1600C	6-9 days	Good	Bad
SSRS	\$178/kg	1350C	3-4 days	Good	Good
[The SSRS route is faster, cheaper, and better!				
					13

[1] J. Tong et al, US Patent application 14/621,091, 2015.

Solid State Reactive Sintering Fabrication

SEM Images of Full SSRS Approach (B)

The full SSRS approach can even be used for fabrication for very complicated component systems. 15

Solid State Reactive Sintering Fabrication

SEM Images of Half SSRS Approach (C)

PCFC cell based refractory BZY20 electrolyte can be fabricated at moderate temperature.

Performance of Our PCFC Button Cells

Representative I-V Curve for Button Cells under H₂/Air

18

Performance of Our PCFC Button Cells

Performance of Our PCFC Button Cells

Performance of Our PCFC Button Cells

Long-term Stability under CH₄+2.5H₂O+Ar/Air at 500C

Performance of Our PCFC Button Cells

SEM Images of Cathode after 1400 h

BZY20+CuO based Cell

No change in cathode nanostructure after 1400 h operation 22

Performance of Our PCFC Button Cells

SEM Images of Anode after 1400 h

BZY20+CuO based Cell No evidence of carbon deposition on anode

The ratio of CO/CO₂ versus hydrogen removal percentage at 500C (a) and versus operation temperature without hydrogen removal (b). Pressure, 10bars; H_2O/CH_4 , 3.²⁴

Conclusions New Triple Conducting Cathode Simplified Fabrication Process

Low Cost Fuel-Flexible Protonic Ceramic Fuel Cells with Excellent Low-T Performance and Durability

Acknowledgements & Questions

Current Funding Support

REBELs Program: Dr. John Lemmon Dr. John Tuttle Dr. Scott Litzelman

Research group members at CSM

Facility Supports

This work is related to two patents and an accepted Science paper. For details please check the following sources.

1) J. Tong et al, US Provisional Patent, 62101285, Jan. 08, 2015 (cathode).

2) J. Tong et al, US Patent application, 14/621,091, 2015 (fabrication).

3) C. Duan, J. Tong et al, Readily Processed Protonic Ceramic Fuel Cells with High Performance at Low Temperatures, *Science* (aab3987), accepted, July 13, 2015.