Intermediate-Temperature Electrogenerative Cells for Flexible Cogeneration of Power and Liquid Fuel

DOE ARPA-E Award # DE-AR0000496

ARPA-E Program Director: Dr. John Lemmon

Greg G. Tao¹, Xingbo Liu², Fanxing Li³, and John Sofranko⁴

1. Materials & Systems Research, Inc.; 2. West Virginia University; 3. North Carolina State University; 4. Bio2Electric, LLC

> 16th Annual SOFC Workshop Pittsburgh, PA, July 14-16, 2015

Materials & Systems Research Inc.

MSRI specializes in materials and electrochemical engineering for power generation and energy storage applications: fuel cells/electrolyzers, storage batteries, and thermoelectric converters.

"Powder in → Power & Liquid Fuel out"

Fuel Cell/Electrolyzer

- Start from off-the-shelf powders
- Both planar and tubular cells
- Per-cell active area varying from 1 to 400 cm²
- Stacks/bundles from 10 W to 4 kW

Sodium-beta Battery

- Advanced Na⁺-conducting ceramic electrolyte
- Unique battery designs

Ec

Outline

Project Overview

Accomplishments

> Summary

Ec (

Opportunity

○ Global NG flaring³

- 5 quadrillion BTU yearly
- ~ 27% U.S. power production

○ Flared/vented gas wells

- Negative value gas
- 50% produce < 1000 bpd

^{1.} K.A Johnson and D.E. Johnson, Methane Emissions from Cattle, J. Animal Science, 1995

² http://www.eia.gov/todayinenergy/detail.cfm?id=18451#
 ³ World Bank, Global gas flaring reduction partnership, 2012

4

Disposition of North Dakota natural gas production (Jan 2010 - August 2014) 2 eia million cubic feet per day 1.500 1,250 sold to customer (69% of August 2014 production 1.000 750 lease use at productior 500 site (3%) 250 flared into atmosphere (28%) 0 2011 2012 2013 2010 2014

Introduction - GTL

Fischer-Tropsch GTL Process (A. De Klerk, U of Albany, 2011)

GTL Economics

GTL Facility	Company	Capacity	Capital Cost ^[5]
Pearl	Shell	140,000 bpd ^[3]	~ \$110,000/bpd
Escravos	Sasol-Chevron	33,000 bpd ^[4]	~ \$180,000/bpd
Sasol I expansion	Sasol		~ \$200,000/bpd

3. A. De Klerk, ARPA-E workshop, Houston TX, January 2012; 4. Pearl GTL – an overview. Shell 2012; 5. B. Reddall. Thomson Reuters, Feb. 24, 2011

REBELS Category 3 – Gas to Power/Liquid

Description	Symbol	Unit		Sample Products*	
Description		Unit	Pentane	Bezene	Methanol 📏
Reaction			$5CH_4 = C_5H_{12} + 4H_2$	$6CH_4 = C_6H_6 + 9H_2$	CH ₄ + 0.5O ₂ =CH ₃ OH
Number of electrons	п	mol/mol	8	18	2
Faraday Constant	F	C/mol	96,485	96,485	96,485
Membrane Active Area	А	cm ²	100	100	100
Cell unit thinkness	t	cm ²	1	1	1
Current density	j	A/cm ²	0.100	0.100	0.100
Molar mass product	М	g/mol	72.2	78.1	32
Density of product	ρ	g/mL	0.626	0.877	0.792
Enthalpy of combustion	$\Delta_c H^o$	kJ/mol	3509	3273	715
Volumetric product output	Р _v =jAM /pnF (x86400)	mL/D	129	44	181
Areal product output	$P_A = j\Delta_c H^o / nF(\div 70.8)$	bpd/cm ²	6.42E-06	2.66E-06	5.23E-06
Process Intensity	$PI=j\Delta_{c}H^{o}/nFt$ (x28,317÷70.8)	bpd/ft ³	0.18	0.08	0.15
Cell material cost	C _A	\$/cm ²	0.50	0.20	0.50
Cell cost per product output	C_A/P_A	\$/bpd	77,870	75,136	95,540

*. ARPA-E FOA No. DE-FOA-0001026, page 21

Organization	Team Leader	Functions		
MSRI	Greg Tao	Cell design; cathode enhancement; fabrication process; material integration; experimental evaluation; PoC demonstration, T2M		
WVU	Xingbo Liu	Highly performing, redox-stable anode development; anode catalyst implementation		
NCSU	Fanxing Li	Methane to methanol catalyst development; GTL process simulation		
B2E	John Sofranko	Methane to methanol catalyst development; cost analysis; T2M		
	atalytic the work of the second s	NC STATE UNIVERSITY 6 16 th Annual SOFC Workshop GTAO@MSRIHOME.COM		

Overall Project Description

<u>**Goal:</u></u> to develop an intermediate-temperature (IT) electrogenerative device for converting natural gas <u>electrochemically</u> into electricity or liquid fuel in a single step:</u>**

- (1) power generation;
- (2) fuel production;
- (3) operating conditions

MSRI

Ec (

Proposed Technology

To integrate state-of-the-art fuel cell technologies, advanced methane-oxidation catalyst development, and unique cell design with the cost-effective cell fabrication technique to produce lowcost electricity and liquid fuel with enhanced durability.

MSRI 4kW SOFC/SOEC stack

Ec 🚺

MSRI 300W portable SOFC module

 $\begin{array}{l} \frac{1}{2}O_{2,c} + 2e^{-} \rightarrow O_{c}^{-2} \quad \text{ORR on cathode} \\ O_{c}^{-2} \rightarrow O_{a}^{-2} \quad \text{O}^{-2} \text{ transport through electrolyte} \\ O_{a}^{-2} + CH_{4,a} \rightarrow CH_{3}OH + 2e^{-} \quad \text{fuel oxidation} \\ & \text{on cathode} \\ \hline \frac{1}{2}O_{2,c} + CH_{4,a} \rightarrow CH_{3}OH \quad \text{overall} \\ & \text{electrochemical reaction} \end{array}$

Tubular, porous Metal-Supported Electrogenerative Cell (TMS-EC)

8

Major Challenges

- Methane oxidation catalyst selectivity for methanol/formaldehyde
- Tailoring catalyst structure to enhance activity & selectivity
- Refining catalyst/electrode design
- Improving catalyst compatibility to anode/electrolyte materials
- Highly performing-cell components (electrodes & electrolyte) at low temperatures
- Electrochemical reaction sites extension
- Methane oxidation catalyst and electrocatalyst implementation
- Cell design to incorporate catalysts
- Cost-effective cell fabrication process development

Scaling –up challenges

9

Approaches

TMS-EC Design

- Tubular form factor
- Porous metal supports with all thin-film structures (electrodes/electrolyte)

Materials Development

- O Methane oxidation catalysts
- O Anode materials
- O Cathode materials
- O Materials integration

TMS-EC Fabrication Development

- O Thermal spray process
- O Dissimilar cell materials integration
- Scaling-up (100 cm²)
- Experimental evaluation for proof-of-concept demonstration

Technology-to-Market (T2M)

- Techno-economic analysis
- O System design (MTG)
- O T2M development

Cell Materials Development

Overpotential breakdown at a cell level for a typical MSRI anode-supported cell

 $\eta_{total} = \eta_{act,an} + \eta_{conc,an} + \eta_{ohmic,an} + \eta_{act,ca} + \eta_{conc,ca} + \eta_{ohmic,ca} + \eta_{ohmic,EL} + \Sigma \eta_{ohmic,cont} + \eta_{ohmic,sp}$

Ec

Cathode Development

Technologies

Ceria-Based Electrolyte Cell (4"x4"- 100cm²)

Beyond 8YSZ-based Electrolyte – for ITFC

A single, planar, Ni+YSZ-supported SOFC (100 cm²) tested at 550°C, 600°C, and 650°C w/50% H_2 -N₂ as the fuel. Both U_f & U_{air} fixed @ 40%

Anode Requirements

Requirements	Ni-YSZ(GDC,SSZ)	Ceramic anodes	Infiltrated anodes
Catalytic activity: electrochemical oxidation of fuel	H ₂ dissociation: Good dry CH _x : Bad	H ₂ and CH _x : OK but not good; Coking resistant;	OK/Good/Super : depending on infiltrated catalysts
Impurity tolerance:	Bad	Good	OK/Good
Stability: Chemically, morphologically	Bad: large volume change of Ni/NiO	Good for redox	OK/Good Depending on backbone and infiltrated material
Conductivity: high $\sigma_e \& \sigma_i$	High σ _e (~1000 S/cm) High σ _i at high T	σ _e OK(0.1~100S/cm) Poor σ _i	OK/Good Depending on catalyst loading and backbone
TEC Compatibility:	OK but generally higher TEC than other components	Better TEC match	TEC: cat. >> backbone is allowed
Microstructure: Porosity, percolation	Sufficient for normal operating conditions	Important	Very important

Design of Highly Performing Anodes

Routes:

Ceramic anode materials

or/and

Nano-catalyst infiltrated anodes

Anode Material Choices

MIEC

- Mixed conductor in reducing atmosphere: whole surface could be "active" and not limited to the TPBs;
- Moderate performance as single component anode material for oxidation of hydrogen;
- Low electronic conductivity;

Alloy

Very good electronic conductivity;

Coking resistant; lower catalytic property

Doped oxides

- Electrical conduction in reducing atmosphere;
- Chemical stability, redox stable; S-tolerant;
- Electrochemical properties for oxidation of H₂;

Anode System #1|GDC|SSZ

Electrode	Gas atmosphe
Electrolyte	a) Wet (1 % H ₂ -
	b) Wet (10 % H
Electrode	c) Wet (100 % H

eres:

+ 99 % N₂); ₂ + 90 % N₂); $H_{2} + 0 \% N_{2}$;

No electronic leaking current through the SSZ electrolyte under the reducing atmosphere;

$Rp = 2.3 \Omega cm^2 @550°C$ for this type anode

A1 Electrode Wet (100% H ₂ + 0% N ₂)	450 °C	500 °C	550 °C
Rp (Ω cm ²)_GDC support	2.7	0.6	0.2
Rp (Ω cm ²)_SSZ support	-	4.9	2.3

Ec

Anode Nano-Catalyst Development

Methane catalytic oxidation by active oxygen species into C1 oxygenates

Anode: $CH_4 + O^{x-} = CH_3OH + xe$ or $CH_4 + O^{x-} = CHOH + H_2O + xe$

Synthesis methods for supported metal oxide catalysts

Incipient wet impregnation

- Precursor of catalyst
- Drying & calcination

Thermal spreading

Catalytic testing: direct conversion of methane to C1 oxygenates was carried out in a continuous flow fixed-bed reactor with co-feed mode (1 atm)

 $\circ~$ 0.4 g catalyst particles in a U-type quartz tube

○ **550~650ºC**

- $\circ~$ Flow w/ 10%O_2 bal. He for 1 hr
- $\circ~$ Flow w/ reactant of CH_4/O_2/N_2/H_2 at 60%/10%/20%/10% respectively, or different ratios

Selective oxidation over CAT1/MCM-41

- Methane conversion is 11%
- The selectivity of C1 oxygenates is 12%
- **CO** selectivity is 70%

Selective oxidation over CAT1/Support-1

Effects of CAT1 Loadings

CO₂ is the main product

The selectivity of CO (16 mol.%) plus C₁ oxygenates+C₂ hydrocarbons (10 mol.%) maximizes at 10 wt.% of CAT1

Effects of Temperatures

 \Box The conversion of O₂ is 100 % at three temperatures

☐ Highest CH₄ conversion is 13%

Cell Manufacturing Process Development

- DoE development for the deposition of all thin-film structures supported on a porous metal substrate
 - Thermal spraying parameters
 - ✓ Feedstock parameters (granulate sizes, feed rate)
 - ✓ Gun operating parameters (gas compositions, V/I)
 - Gun movement parameters (SoD, speed, angle)
 - Mapping "sweet spot"
 - Substrate temperature

Summary

- Flexible operation for power generation or/and fuel production
 - O Modularity
 - O Less complexity
 - O Suitable for remote site applications (well pads)
 - O minimum O&M costs
 - O low financial risks
- Greenhouse gases emission reduction
 - Turning flaring gas (negative value) into marketable products (fuel or power)
- Enable small GTL modules integration with MTG process
- Mobile GTL reactors
- Distributed power generation

Mobile GTL

Acknowledgement

- This material is based upon work supported by the Advanced Research Projects Agency – Energy Program under contract # DE-AR0000496
- ARPA-e REBELS Program management team Drs.
 John Lemmon, Mark Pouy, John Tuttle, and Scott Litzelman

Thank you!

