SOFC Development at PNNL: Overview

J.W. Stevenson, B.J. Koeppel, Y.S. Chou, J.S. Hardy, J.P. Choi, K. Lai, Z. Xu, and C.A. Coyle

Pacific Northwest National Laboratory Richland, WA 99354

July 15, 2015 16th Annual Solid Oxide Fuel Cell Workshop Pacific Northwest

Outline

Introduction

- Materials Development
 - Cathode materials and interactions
 - Effects of humidity and CO₂
 - Cathode to interconnect contacts
 - Strengthening of cathode/contact materials interfaces (combined experimental/modeling approach)
 - Interconnects/BOP
 - Reactive air aluminization: Dip-coating
- Modeling/Simulation
 - Contact layer and interface reliability
 - Sintering of cathode contact materials
 - Effect of roughness on interfacial strength
 - Reduced order models (ROMs) for improved system modeling

SECA CTP Cathode Team: Effect of Cathode Air Humidity

LSM/YSZ

- Immediate, reversible increase in polarization when water was introduced
 - Attributed to adsorption of water
- Increased rate of performance degradation when water was introduced
 - Microstructural and chemical changes
- Humidity effects more prominent at higher current density
- LSCF
 - Adverse effects of water increased with decreasing temperature
 - Increased polarization
 - Increased degradation rate

	PNNL-24115
	rrepared for the U.S. Department of Energy under Contract DE-AC05-76RLD1830
n	
	Effects of Humidity on Solid Oxide Fuel Cell Cathodes
when	John Hardy and Jeff Stevenson Pacific Northwest National Laboratory
	Prabhakar Singh and Manoj Mahapatra University of Connecticut
	Eric Wachsman University of Maryland
	Meilin Liu Georgia Institute of Technology
urrent	Kirk Gerdes National Energy Technology Laboratory
	March 17, 2015
	Pacific Northwest NATIONAL LABORATORY
	Proudly Operated by Battetie Since 1965

Effect of 12% CO₂ on LSM/YSZ Cathodes

- Anode-supported button cells tested in dry air with and without CO₂
 - Lower initial performance in presence of CO₂ (dilution, adsorption?)
 - No impact on degradation rate

4

 Similar behavior in alternating atmospheres (no clear impact from presence of CO₂)

Effect of 12% CO₂ + 3% H₂O on LSM/YSZ Cathodes

- Anode-supported button cells tested in dry air with and without CO₂
 - Lower initial performance in presence of CO₂ and H₂O (dilution, adsorption?)
 - No clear impact of CO₂ on degradation rate

Effect of 12% CO₂ + 3% H₂O on degradation

Poster: "In-Operando XRD of LSM/YSZ Cathodes in Combined $H_2O + CO_2$ during 1000+ h SOFC Tests" (John Hardy)

Strengthening of cathode/contact materials interfaces

Cathode/Interconnect Contact Materials

Requirements:

- High electrical conductivity to reduce interfacial electrical resistance between cathode and interconnect
- Chemical and structural stability in air at SOFC operating temperature
- Chemical compatibility with adjacent materials (perovskite cathode, interconnect coating)
- Adequate mechanical strength and bonding to adjacent components
- Low cost materials and fabrication

Challenges:

- Low processing temperature during stack fabrication (800-1000°C)
 - Low density results in low intrinsic strength and low bond strength
- Brittle nature of ceramics; Cost/volatility of noble metals

Goal:

Develop cathode/interconnect contacts with <u>low electrical resistivity</u> and <u>increased mechanical strength</u>

Engineered cathode surface texture

Objective: Enhance mechanical interlocking at cathode/contact material interface for improved mechanical strength during thermal cycling.

Rationale for Approach: Surface blasted steel coupons exhibited excellent scale adhesion after 30,000 hours of testing at 800°C (image below), whereas unmodified coupons exhibited spallation after <10,000 hours

Approaches for surface texturing of screen printed cathodes:

- Impression with SiC grit paper
- Impression with Ni mesh
- Addition of graphite particles
- Print with patterned screens
- Granule deposition on wet print

Granule deposition on wet print

- LSM20 powders were mixed with binders, then dried and pressed through sieves #35, #60, and #100 to make large granules for deposition onto surface.
- After deposition and drying, the samples were sintered at 1100°C/2h in air.

Powder deposition on wet print

Deposition of LSM20 granules onto wet 2mil print, dried, and sintered 1100°C/2h in air

Bonding of deposited granules on cathode

- LSM20 powders (#100 mesh) sintered at 1100°C/2h in air onto LSM20 cathode.
- Solid-state bonding

Pacific Northwest

Contact strength of joined couples sintered at 950°C/2h in air

Strength increased ~3-14 times with granules-deposited surfaces

Effect of sintering temperature on contact strength of joined couples

All sintered at T for 2h in air with granule-deposited (#35 mesh) surfaces

Poster:

"Mechanical Properties of Cathode Contact Materials and Surface Texture Effect on Cathode Contact Strength of Solid Oxide Fuel Cells" (Matt Chou)

Reactive Air Aluminization: Dip Coating

July 30, 2015

Reactive Air Aluminization (RAA)

•Reaction between alkaline earths in glass seals and Cr in interconnect steel can form high CTE chromate phases (e.g., $SrCrO_4$), which degrade interfacial strength

•Cr volatility from alloys can poison cathodes

•Reactive Air Aluminization (RAA) offers a simple alternative to controlled atmosphere aluminization of interconnects (and BOP components)

Current Emphasis

- Development of dip-coating process for coating interior surfaces (e.g., cathode air delivery tubes)
- Alternative to previously developed screen-printing and aerosol spray processes

Reactive Air Aluminizing

Pacific Northwest

RAA: Dip-Coating Process

Slurry variables: Solids/Solvent ratio, binder content

Poster: "Dip Coating Reactive Air Aluminization Process for SOFC Components" (Jung Choi)

Modeling of Contact Sintering

Modeling of Contact Sintering: Overview

- Goal: Develop computational models to simulate the *in situ* formation and subsequent reliability of the cathode contact layer during fabrication and operation
 - Provide guidance on material properties or modifications necessary for dense, mechanically robust cell interfaces and contact layers
- Accomplishment: Developed a three-dimensional thermo-viscoelastically coupled continuum sintering model and implemented in FEA to capture the densification behaviors of the cathode contact materials
 - Porous medium treated as a linear-viscous incompressible fluid containing isotropically distributed voids following Olevsky-Skorohod framework

Verification of Free/Constrained Sintering

Analytical solutions for constant heating rate of zinc oxide powder heated at 5°C/min. (SAND2003-4293)

Constrained sintering experiment of zinc oxide bilayer (Olevsky, 2006. J.Am.Ceram.Soc.)

25°C	1000°C			
	Experiment	Prediction	Difference	
<i>L</i> (8.049 mm)	6.7 mm	6.98 mm	4.2%	
<i>D</i> ₇ (19.05 mm)	15.24 mm	15.38 mm	1.3%	
<i>D_B</i> (19.05 mm)	15.66 mm	16.06 mm	2.0%	
<i>T_E</i> (2.00 mm)	1.63 mm	1.68 mm	1.1%	
<i>T_c</i> (2.00 mm)	2.72 mm	3.16 mm	13.7%	

Cathode Contact Paste Model for SOFC Stack

- Extract temperature-dependent viscosity from sintering and thermal expansion experiments for different contact paste materials
- Construct model of PNNL's stack test fixture with contact paste on the cathode IC ribs

Effects of Fabrication Conditions

Combined Fabrication and Operating Stresses

Next Steps

Currently evaluating the mechanical reliability of the cell as a function of:

- Combined stress state (residual stresses formed during contact fabrication plus thermal-mechanical stresses due to high temperature operation)
- Different component material and Weibull strength properties
- Different stack operating states using SOFC-MP 3D
- Continue to collaborate with materials development team to examine different contact materials and surface modification textures to increase strength and mechanical interlocking

Modeling of Rough Interfaces

Interfacial Strength: Benefit of Roughness

- Physical surface modifications for metallic interconnects (e.g. surface grind, surface blast) were experimentally shown to create a more adherent oxide scale for protection against spallation under long term heat treatment up to 36,000 hr.
- These surface modifications changed the interface roughness profile resulting in improved mechanical behavior and delamination resistance
- Numerical modeling in the literature also suggests an increasing toughness with the interface roughness
- What is the preferred roughness profile?

SS441 interconnect/oxide scale/protective coating

PD Zavattieri, LG Hector Jr, and AF Bower, 2008, "Cohesive Zone Simulations of Crack Growth Along a Rough Interface Between Two Elastic-Plastic Solids," Engr Fract Mech 75(15):4309-4332.

July 30, 2015

Discrete Element Model (DEM) for Interface Roughness

 Goal: Quantify the influence of surface roughness on interfacial delamination resistance of dissimilar materials

- DEM represents a body as a packed array of bonded particles:
 - Random particle size
 - Interaction via bonds and friction
 - Can assign material failure as a function of shear and/or normal stress
 - Can easily define an interface between two materials with its own property set
 - Can study failure propagation paths

Effect of Increasing Roughness

- Increasing the amplitude of the sinusoidal interface (i.e. roughness) increases the strain/load at which unstable delamination occurs
- Interface toughness predicted to increase similar to the literature data

Effect of Coating and Interface Failure

- Including the option for coating and interface fracture, the roughness is still beneficial to increase the effective strength of the interface
 - ~30% for the 'weak' interface and ~15% for the 'strong' interface definition
- Local mechanical interlocking further increases load carrying capacity of the interface

Next Steps

- Currently, evaluating the interconnect oxide scale structure and compare to previously obtained experimental data to verify the model predicts improved interface strength due to surface modification and realistic roughness profiles.
- Evaluate the cathode contact layer and potential surface modifications to provide guidance on surface roughness for enhancement of interfacial strength.

Poster:

"A Discrete Element Model (DEM) for Fracture Toughness of Rough Interfaces" (Zhijie Xu)

SOFC-MP and SOFC-ROM Modeling Tools

Reduced Order Model (ROM) Demonstration

- **Goal**: Demonstrate an analysis procedure to leverage high fidelity stack model performance information for use in system-level modeling tools
- Approach: Collaborate with ESPA/NETL modelers to define, generate, implement, and demonstrate use of an SOFC stack ROM in the NETL power generation system models

Accomplishments:

- Ensured use of state-of-art SOFC stack current-voltage performance
- Implemented material flow sheet to define stack operating parameters based on key parameters relevant to the SOFC-based power system
- Utilized the SOFC-MP 2D stack model for sampled cases
- Performed error analysis for ROM output parameters of interest
- Collaborated with ESPA/NETL system modelers to implement the exported ROM and demonstrate its use in NETL ASPEN+ system models for an NGFC system (to be presented by NETL)

Poster:

"Reduced Order Model Creation for SOFC Power System Models" (Kevin Lai)

Recirculation Capability for SOFC-MP 2D

- Air and fuel recirculation loops added to SOFC-MP 2D module to benefit the ROM/system modeling activity
 - Air and fuel recirculation loops with heat exchangers (HTX)
 - Air side: cold inlet air heated in HTX by stack exhaust prior to mixing with recirculated fraction of air
 - Fuel side: cold inlet fuel mixes with stack exhaust prior to heating by anode off-gas
- This approach provides preferable access to the operating metrics useful from the system modeling perspective rather than the usual stack perspective
 - E.g., heat exchanger effectiveness, recirculation fraction, etc.

Example: Fuel Recycle Benefit

Recycle of fuels with high CH₄ content provides smaller ΔT and smoother current density profile

Tradeoffs in power for different recirculation fractions can be identified with respect to the cell temperature state

Next Step: Test ROM generation procedure and evaluate approximation error using 2D stack input with recirculation capability

SOFC-MP 3D Support for ROM

- The ROM tool presently utilizes SOFC-MP 2D only for detailed stack model sampled inputs
- Integration of SOFC-MP 3D module to the ROM tool in progress
 - Beneficially, the 3D provides more accurate results and detailed distributions of the performance quantities of interest
 - 3D simulations are more computationally intensive, but permit analysis of the cross-flow cell configuration

Supports ROM variables to mimic the 2D module implementation

ROM Input Parameters	Salient ROM Output Parameters*
Average current density (J)	Cell voltage (V)
Fuel utilization (FU)	Cell temperature profile (including T_{max} , T_{min} , and ΔT)
Inlet NG composition - fixed	Stack air outlet conditions
Inlet air composition	Air outlet temperature (T _{air-out)}
Fuel inlet temperature (T _{fuel-in})	Species (N_2 , O_2 , Ar, CO_2 , H_2O) mole flows
Air inlet temperature (T _{air-in})	Stack fuel outlet conditions
Anode inlet gas oxygen to carbon ratio (OTC)	Fuel outlet temperature (T _{fuel-out})
Cathode gas recirculation fraction (RF _{cath})	Species (CH ₄ , H ₂ , CO, H ₂ O, CO ₂ , N ₂) mole flows
Internal reformation fraction (X _{int-ref})	Current density profile (J _{max} , J _{min} , J _{avg})
Air utilization (AU) or Air Stoichs	

Future Work

- Cathode materials and interactions
 - Effects of volatile Cr species on cathode performance
 - Quantitative assessment of Cr dosing/Cr update
 - Mitigation of Cr poisoning (Evaluate/optimize Cr gettering materials)
 - Improve the sintered density of doped ceria barrier layers
- Cathode contact materials
 - Further improve the mechanical strength/bonding at cathode-tointerconnect interfaces through fibrous inclusions and sintering aids
- Interconnects and BOP
 - Develop reduced temperature RAA process
- Modeling tools
 - Extend ROM tool for the IGFC system and improve ROM procedure for simplified Aspen+ integration
 - Continue evaluation of cathode contact material improvements and cell reliability
 - Collaborate with NETL and ORNL to use electrochemical performance and degradation models/data developed at different scales

Pacific Nor

NATIONAL LABORATORY

Summary

PNNL is using experimental and computational capabilities to accelerate the commercialization of SOFC power systems.

Cathodes

- Electrochemical performance of both LSCF and LSM-based cathodes is impacted by the presence of moisture (3% water) in the cathode air stream.
- CO₂ (up to 12%) may impact initial cell performance, but has negligible effect on degradation rates.

Cathode Contact Materials

 Texturing of cathode surfaces results in increased bond strength between cathodes and contact materials, but further improvement is desirable.

Interconnects/BOP

 A dip coating process has been developed to allow for reactive air aluminization of inner surfaces (e.g., cathode air delivery tubes)

Stack Modeling Tools

 Demonstrated use of a reduced order model (ROM) to more accurately represent the stack in power system models

Acknowledgements

- The work summarized in this paper was funded by the U.S. Department of Energy's Solid Oxide Fuel Cell Program
- NETL: Shailesh Vora, Briggs White, Rin Burke, Joe Stoffa, and Travis Shultz

