Materials and Approaches for the Mitigation of SOFC Cathode Degradation in SOFC Power Systems

Prabhakar Singh, Chiying Liang, Boxun Hu, Manoj Mahapatra, Sridevi Krishnan, Byung Jun and Rampi Ramprasad

> Department of Materials Science and Engineering Center for Clean Energy Engineering, University of Connecticut, CT

WORK PERFORMED UNDER AGREEMENT DE-FE 0023385

16th SOFC Workshop, Pittsburgh July 14, 2015

Technical Contributors

Prabhakar Singh Manoj K Mahapatra Rampi Ramprasad Boxun Hu Sridevi Krishnan Chiying Liang Byung Jun Professor Assistant Professor in Residence Professor Post-doctoral fellow Post-doctoral fellow Graduate Student Graduate Student

Program Manager: Dr. Patcharin N. Burke, National Energy Technology Laboratory

<u>UConn:</u>

Outline

- Accomplishments
- Background
- Experimental
 - Fabrication and testing of Cr Getter
 - Electrochemical Testing without and with a Cr Getter
 - Characterization-SEM-EDX, XRD, FIB-TEM
- Results and Discussion
- Future Work
- Acknowledgements

Accomplishments

- An efficient chromium getter for capturing Cr vapor species, present in the cathode atmosphere of SOFC power generation system, has been developed and tested.
- Developed chromium getter shows excellent affinity for gaseous Cr species. Cr species are captured close to the air inlet.
- Distribution of the chromium deposition has been studied using FIB-TEM,SEM-EDX and XRD for the tested getter for 500 hrs.
- Half-cell electrochemical testing of LSM/YSZ/LSM symmetric cell in dry air, chromium vapor/dry air with / without getter has been conducted for 100 h and post-test analytical study (XRD, SEM-EDS, and FIB-TEM) are in progress.
 - Getter design can be tailored to meet various SOFC systems configurations.
 - Getter materials can be used for capturing Cr originating from BOP and IC.
 - Approaches for scale up (higher TRL) have been developed.

Meeting the DOE SOFC program mission

Program Outcome

- Graduate / Undergraduate students trained 5
- Post-doctoral fellow: 2
- Patent disclosure: 1
- Technical Publications
 - Technology Focused > 5
 - Enabled adjacency areas >5
- Technical presentations >5
- Outreach: Middle and High School, Davinci Program, STEM

Select peer reviewed publications

- V Sharma, MK Mahapatra, P Singh, R Ramprasad, "Cationic surface segregation in doped LaMnO3" J Mater Sci 50 (8), 3051- 3056, 2015
- B Hu, MK Mahapatra, P Singh, "Performance regeneration in lanthanum strontium manganite cathode during exposure to H2O and CO2 containing ambient air atmospheres" Journal of the Ceramic Society of Japan 123 (4), 199-204, 2015
- B Hu, M Keane, MK Mahapatra, P Singh," Stability of strontium-doped lanthanum manganite cathode in humidified air" Journal of Power Sources 248, 196-204, 6, 2014
- B Hu, MK Mahapatra, M Keane, H Zhang, P Singh, "Effect of CO2 on the stability of strontium doped lanthanum manganite cathode" Journal of Power Sources, 1-10, 2, 2014
- MK Mahapatra, P Singh, "Fuel Cells: Energy Conversion Technology" Future Energy (Second Edition), 511-547 (Book Chapter) Enabled adjacency areas (selected):
- S Gupta, S Prabhakar "Manganese Doped Lanthanum-Strontium Chromite Fuel Electrode for Solid Oxide Fuel Cell and Oxygen Transport Membrane Systems" ECS Transactions 66 (3), 117-123, 2015
- N Li, A Verma, P Singh, JH Kim, "Characterization of La 0.58 Sr 0.4 Co 0.2 Fe 0.8 O 3- δ-Ce 0.8 Gd 0.2 O 2 composite cathode for intermediate temperature solid oxide fuel cells" Ceramics International 39 (1), 529-538,7, L Ge, A Verma, R Goettler, D Lovett, RKS Raman, P Singh, "Oxide scale morphology and chromium evaporation characteristics of alloys for balance of plant applications in solid oxide fuel cells" Metallurgical and Materials Transactions A 44 (1), 193-206
- S Gupta, MK Mahapatra, P Singh, "Lanthanum chromite based perovskites for oxygen transport membrane" Materials Science and Engineering R 90, 1-36, 1 2015
- KT Jacob, P Panwar, P Gupta, P Singh, "Use of Composition-Graded Bi-Electrolyte Cells for Thermodynamic Studies on Lanthanum Aluminates" Journal of The Electrochemical Society 161 (6), H343-H349, 2014

Technical reports, Presentations and outreach (selected):

- J Hardy, J Stevenson, P Singh, M Mahapatra, E Wachsman, M Liu, Effects of Humidity on Solid Oxide Fuel Cell Cathodes" Pacific Northwest National Laboratory, 2015
- S KRISHNAN, V SHARMA, MK MAHAPATRA, P SINGH, "Probing for cationic dopants in lanthanum manganite for solid oxide fuel cell applications" The American Physical Society 2015
- P Singh, T Suzuki, J Akedo, MF Han, S Kuehn, R Lee, JW Son, Y Fujishiro, "Regional Editor's Special Issue" Trend of Current Research on Solid Oxide Electrochemical Cells" Preface JOURNAL OF THE CERAMIC SOCIETY OF JAPAN 123 (1436) 2015
- V Sharma, S Krishnan, B Hu, MK Mahapatra, P Singh, R Ramprasad," Cationic surface segregation in doped LaMnO3: A first principles thermodynamics study" NETL SECA Meeting Poster, 2015

Background

ENERGY UCONN EDU

- SOFC cathode are prone to poisoning and degradation arising from (a) impurities present in the incoming air (intrinsic and extrinsic impurities) and (b) interactions with the electrolyte.
 - Intrinsic gas phase impurities H2O, CO2,....
 - Extrinsic gas phase impurities CrOx, CrO(OH)x...
 - Degradation due to solid–gas and solid–solid interactions
 - Exolution and compound formation
 - Surface coverage and resistance to oxygen reduction
- BOP components and cell interconnections contribute to Cr evaporation and poisoning of the cathode.
 - Poisoning is due to coverage of active surface and TPB, compound formation and deposition of chromia.
- Approaches for mitigation of chromium poisoning include minimization of chromium evaporation from exposed metallic surfaces – alloy chemistry modification and surface coating
- There is limited/ no literature on capturing chromium vapor before reaching active cathode.

Background

HSA Low dP Support

A wide variety of support materials and configurations are available for application in SOFC system. Selection will be based on:

- Materials stability in SOFC atmosphere
- Materials interaction with applied coatings
- Design flexibility

Morphology and Substrate interactions

Experimental Setup

Chromium source

Getter and support

Surface Morphology: Inlet to outlet

400 microns

UCONN

V.ENERGY.UCONN.EDU

Distance from Air Inlet

30 mm

Clean Energy

Inlet morphology and chemistry: At 418 microns

Cr interaction and localized association is observed near the air inlet. XRD analysis will be performed to study compound formation.

Cr Intensity Profile near air inlet

ENERGY.UCONN.EDU

Center channel Chromium distribution

Chromium weight percentage along chromium getter goes to approximately zero before 3 mm from inlet.

Cr Intensity Profile near air inlet

Initial ~1200 microns near inlet

Higher Cr concentration is observed near the inlet. Center channels show higher concentration because of air flow configuration

Cr Intensity Profile – Entire length

Profile over the entire length

WWW.ENERGY.UCONN.EDU

Cr Intensity Profile of last chromium getter for comparison

Higher Cr intensity (analysis performed using EDS technique) is observed near the air inlet (~ 1200micron). Flat Cr profile is observed over the entire length after ~1500 micron.

Post tested coating

Chromium distribution along length of getter

Sample	Heat treatment step 1	Heat treatment step 2	Chromium evaporation test		Cultotrata
			Temperature	Time	Substrate
Used getter 1	950 C for 2hrs	850 C for 10 hrs	850 C	500 hrs	Cordierite
Used getter 2	950 C for 2hrs	850 C for 10 hrs			
Used getter 3	1000 C for 2hrs	850 C for 10 hrs			

XRD pattern of 3 used chromium getters

Gas phase chromium interaction with the coating and substrate leads to stable compound formation.

ENERGY.UCONN.EDU

Samala	Heat treatment step 1	Heat treatment step 2	Chromium evaporation test		Cultotrate
Sample			Temperature	Time	Substrate
Used getter 1	950 C for 2hrs	850 C for 10 hrs	850 C	500 hrs	Ceramic channels
Used getter 2	950 C for 2hrs	850 C for 10 hrs			
Used getter 3	1000 C for 2hrs	850 C for 10 hrs			

used Cr getter 3

Getter 1 and 3 were coated 2X

Elbow pictures at outlet

Reactor elbow discoloration due to Cr-vapors

Without getter

With getter

FIB/STEM for Structural and Compositional Analysis

Original Cr/Getter surface

Cr/Getter surface (FIB cutting)

<1 µm thickness sample (After FIB cutting)

UCONN/FEI Helios G3 nanofabrication produces ultra-thin samples for S/TEM

FIB X-Sectional Evaluation

Lower magnification

UCONN n.energy.uconn.edu

Higher magnification -

HAADE HAADE MAGE 40.0kx HV: 200kV

FIB-STEM Characterization

UCONN V.ENERGY.UCONN.EDU

The FIB sample was taken from a posttest getter (an inlet surface has the most Cr deposits) after 500 hour test at 850° C in 3% H₂O/air.

Electrochemical Tests using Getters

ENERGY.UCONN.EDU

Screen printer for LSM electrodes

Results & Discussion

UCONN EDU

LSM cathode in 3% H2O/air at 850°C with 0.5 V bias for 100 h (no Cr source)

Formation of SrO may react with $CrO_2(OH)_2$ species in wet air: SrO + $CrO_2(OH)_2$ = SrCrO₄ + H₂O

1. B. Hu, M. Keane, M. K. Mahapatra, P. Singh, J. Power Sources, 2014, 248, 196-204.

2. Z. Yang, G. Xia, P. Singh, J.W. Stevenson, J. Power Sources, 2006, 155, 246-252.

Post-test Surface Morphologies of the Half-cell Cathodes

All tests have been performed at 850°C using 3% H_2O/air . Tests will be repeated to understand morphological and chemical reproducibility.

no Cr, no getter

NEDU

with Cr, no getter

with Cr, with getter

Summary

- An efficient chromium getter for capturing Cr vapor species, present in the cathode atmosphere of SOFC power generation system, has been developed and tested.
- Developed chromium getter shows excellent affinity for gaseous Cr species. Cr species are captured close to the air inlet.
- Distribution of the chromium deposition has been studied using FIB-TEM,SEM-EDX and XRD for the tested getter for 500 hrs.
- Half-cell electrochemical testing of LSM/YSZ/LSM symmetric cell in dry air, chromium vapor/dry air without and with a getter has been conducted for 100 h and post-test analytical study (XRD, SEM-EDS, and FIB-TEM) are in progress.
- Getter materials and design can be tailored to meet various SOFC systems configurations.
- Getter materials can be used for capturing Cr originating from BOP and IC.
- Approaches for scale up (higher TRL) have been developed.

Future Work

- Use thermochemistry to develop and optimize getters
- Use P:B methodology to optimize getter utilization
- Use conventional coatings to develop porous layer
- Optimize SA using various coating techniques
- Select substrates channels, foams, fibrous
- Test and validate long term performance (2-5KHrs.)
- Transfer technology

Increase TRL level and work with SOFC manufacturers for implementation and testing in SOFC

- Work performed under US DOE grant DE-FE 0023385
- Dr. Patcharin Burke for technical guidance and programmatic support
- Mr. Rich Goettler (LGFC) for technical discussion (systems requirements)
- Dr. Jeff Stevenson (PNNL) for experimental approaches
- UConn for providing laboratory support

Thank you

