
Office of Fossil Energy's Solid Oxide Fuel Cell (SOFC) Program Overview

16th Annual SOFC Workshop Pittsburgh, PA July 14 -16, 2015 Shailesh D. Vora

Technology Manager, Fuel Cells
National Energy Technology Laboratory

DOE Office of Fossil Energy (FE) Solid Oxide Fuel Cell (SOFC) Program

DOE's Clean Coal R&D Program is focused on developing and demonstrating advanced power generation and Carbon Capture and Storage (CCS) technologies

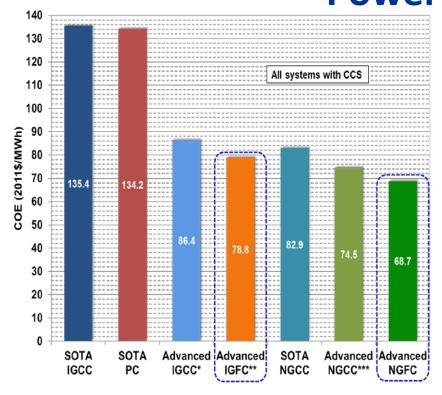
FE SOFC Program Mission

- Enable the generation of efficient, low-cost electricity from domestic coal and natural gas with near-zero emissions of CO₂ and air pollutants and minimal use of water in central power generation applications.
- Increase reliability, robustness, and durability of solid oxide fuel cell and stack technology.
- Provide the technology base to permit natural gas fueled distributed generation (DG) applications.

60% Efficiency (Coal HHV)

≥ 97% CO₂
Capture

<0.5ppm NOx, low H₂O use


Low Cost, similar footprint to IGCC

Modular Technology

Fuel-Flexible

Techno-Economic Analysis of Utility-Scale Power Plants

SOTA: State of the Art **IGCC: Integrated Gasification Combined Cycle**

PC: Pulverized Coal

IGFC: Integrated Gasification Fuel Cell NGCC: Natural Gas Combined Cycle NGFC: Natural Gas Fuel Cell

- Advanced IGCC system includes: coal feed pump, warm gas cleanup, H₂ membrane, advanced H₂ turbine, and ITM
- ** Advanced IGFC system includes catalytic gasifier, 0.2% degradation rate, and internal reforming
- *** Advanced NGCC system features a J-class turbine with a state-of-the-art carbon capture system

Natural gas price: \$6.13/MM BTU Coal price: \$2.91/MM BTU

SOFC power systems offer a pathway to low cost, high efficiency electric power generation – with CCS – from fossil fuels

SOFC Program Structure

Systems Development

- Multiple teams developing unique and proprietary SOFC technology
- Scope includes cells to fully integrated SOFC power systems
- Pilot-scale and prototype system testing
- Held to a common set of performance and cost metrics

Core Technology

- Applied R&D focused on technologies critical to the commercialization of SOFC technology
- Evaluate, develop and implement advanced technologies to reduce costs and improve performance, reliability and endurance
 - Materials
 - Manufacturing processes
 - Computational tools and modeling

The multi-team approach provides technology diversification and reduces program dependency on a single developer

SOFC Project Portfolio

Systems Development

FuelCell Energy*
LG Fuel Cell Systems*

Cell Development

ANL

Boston University

Case Western Reserve University

Georgia Tech

MSRI

NFTL-ORD

NexTech

ORNL

PNNL

Pneumaticoat

Sandia

SMI

Sonata*

Stanford

University of Connecticut

University of Maryland

University of Pennsylvania

University of South Carolina

University of Wisconsin

West Virginia University*

Core Technology

Interconnects

NexTech

PNNL

Seals

Michigan State Univ

ORNL

PNNL

Modeling & Simulation

NFTL-ORD

PNNL

Balance-Of-Plant

Mohawk

Innosense

PNNL

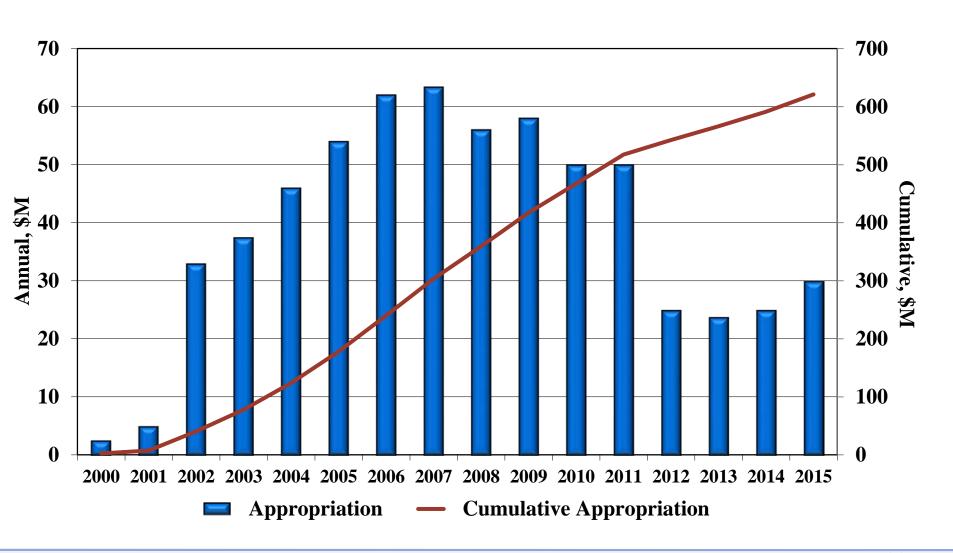
Stack Reliability & Testing

Acumentrics

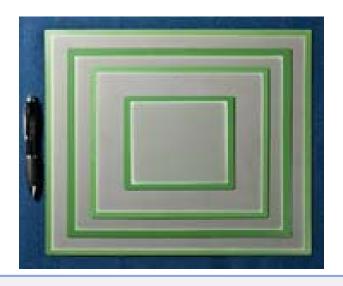
NAVSEA

NREL

The SOFC Program has a portfolio of more than 30 projects, ranging from bench-scale R&D to system-scale testing


SOFC FY15 Program Participants

The SOFC Program has a geographically diverse roster of participants


SOFC Program Funding History

Where we were ... Where we are ... Cell Development

Component	2000		2015	
Interconnect	Dense La-chromite	Expensive, requires high sintering temp.	Stamped Ferretic SS + Coating	Low-cost, post-processing possible
Cathode	LSM	High Resistance	LSM+YSZ, LSCF-doped- Ceria	Low Resistance
Electrolyte	Thick YSZ	High Resistance, mechanical support	Thin YSZ + doped-Ceria Barrier Layer	Low Resistance
Anode	Thin Ni-YSZ	Screen-printed Functional Layer	Medium Thickness (~500 mm) Ni-YSZ	Tape-cast, mechanical support

- Developed planar anode-supported cell
- Increased cell area by 5x..... scaling to 10x
- Increased cell power by 10x
- Improved material set for higher performance
- Improved manufacturing processes
- Reduced operating temperature by ~100°C
- Reduced cell degradation to <0.5%/1,000 hrs

Where we were ... Where we are ... Stack Development

Reduced Cost

- Improved mfg processes
- Simplified design

Improved Reliability

- SS interconnects
- Improved seals

Improved Performance

- Improved materials sets
- Modeling tools employed

Scale-Up

- Larger cells
- 1st generation interconnects

Single Cells & Small Stacks

- < 10 cells, no interconnects
- Operating temperature >800°C, ΔT undefined
- Low power density
- Limited operation, <1,000 hrs
- High degradation

30 kW Stack Tower

- 96 cells, low cost interconnects
- Operating temperature <800°C, ΔT<100°C
- Increased power density
- Operation >> 1,000 hrs
- Degradation ~1% per 1,000 hrs

Where we were ... Where we are ... Performance and Reliability Testing

2000 - 2005

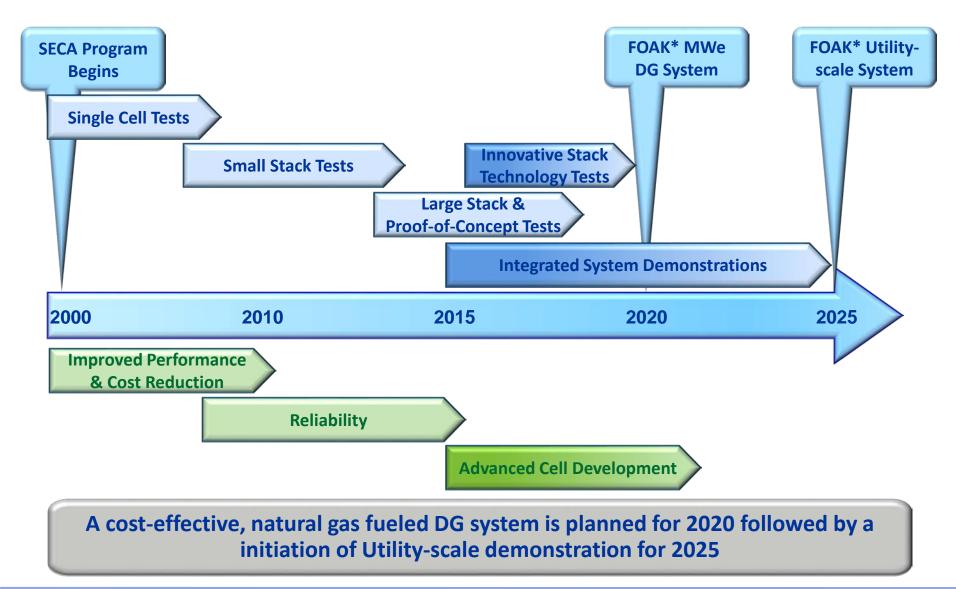
Technology Validation

- Single cells
- 1 -3 kW small stacks
- Degradation >4% per 1,000 hrs
- Limited operating hrs

2006 - 2010

Performance Improvement

- 10 kW-class stacks
- Degradation <2% per 1,000 hrs
- Operating hrs >1,500


2011 - 2015

Proof-of-Concept

- 100 kWe-class stacks
- Thermally-self sustaining
- Natural gas- fueled
- Degradation 1 1.5% per 1,000 hrs

SOFC Program Evolution

Where we're going ...

- Test progressively larger stacks
- Initiate field test of a 400 kWe-class prototype power system
- Continue R&D to reduce cost, improve performance, and improve reliability
- Explore new cell and stack concepts to significantly undercut cost targets

FY15 SOFC Program Update

- Two competitive solicitations
 - FOA-0001244: 400 kWe SOFC Prototype System Testing
 - 400 kWe SOFC Field Test
 - One award, ~\$6M, 30% Participant Cost Share
 - FOA-0001229: SOFC Innovative Concepts and Core Technology Research
 - Topic Area 1: Innovative Systems
 - R&D with potential to significantly undercut current DOE cost targets
 - 5 10 kWe-scale stack test, 1000 hrs
 - Five awards, ~\$2.5M per award, 20% Participant Cost Share
 - Topic Area 2: SOFC Core Technology
 - R&D that improves performance, reliability, and/or endurance of cell or stack technology
 - Lab or bench scale testing on any cell or stack component
 - Ten awards, ~\$200k per award, 20% Participant Cost Share
- Four new SBIR Projects
- Closer collaboration with ARPA-E

SOFC Technology Development Timeline

2030 2015 2020 2025 50 kWe Stack Test • Thermally self-sustaining Commercial scale TRL 5 125 kWe Module Test Proof-of-concept Multiple stacks • Commercial scale • TRL 6 400 kWe Field Test Prototype • TRL 7 **Commercial DG Systems** MWe Demonstration(s) Natural gas • Multiple deployments **Privately funded** CCS 10 MWe Demo Delivery to existing infrastructure • IGFC/NGFC slipstream • TRL 7-8 CCS **50 MWe Utility-scale Demonstration** First-of-a-kind CCS

Natural gas fueled DG systems will establish the manufacturing and operational experience necessary to validate and advance the technology for both natural gas and gasified coal-based central power generation

SOFC Program ... Key Takeaways

- Emphasis on increased reliability
- Awarded the 1st prototype system field test
- Five new projects are focusing on advanced stack/system concepts
- Ten new projects developing innovative cell/stack components

16th Annual SOFC Workshop - Overview

Tuesday

Plenary Session: Dr. Grace Bochenek, Director NETL

Industry Team Presentations

Core Technology Teams: Reliability, Robustness, & Endurance

ARPA-E REBELS Projects: IT Fuels Cells for DG

Tuesday Evening Poster Session and Reception

Wednesday

National Laboratories

Core Technology Teams: Reliability, Robustness, & Endurance

ARPA-E REBELS Projects: IT Fuels Cells for DG

ARPA-E REBELS Projects: Load-Following IT Fuels Cells

Thursday

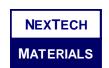
Core Technology Teams: Reliability, Robustness, & Endurance

ARPA-E REBELS Projects: Liquid Fuel-Producing IT Fuels Cells

ARPA-E REBELS Projects: Load-Following IT Fuels Cells

ARPA-E REBELS Projects: SOFC Projects

SOFC FY15 Program Participants

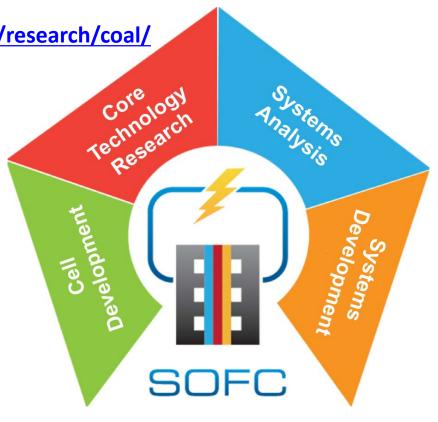


Websites and Contact Information

Office of Fossil Energy: www.energy.gov/fe/office-fossil-energy

NETL Website: www.netl.doe.gov/

SOFC Program website: www.netl.doe.gov/research/coal/


energy-systems/fuel-cells

Reference Shelf:

- SOFC Program FY15 Project Portfolio

- SOFC Technology Program Plan
- Technology Readiness Assessment
- Past SECA Workshop Proceedings
- Systems Analysis
- Fuel Cell Handbook

Dr. Shailesh D. Vora
Technology Manager, Fuel Cells
National Energy Technology Laboratory
U. S. Department of Energy
412-386-7515
Shailesh.Vora@netl.doe.gov

www.netl.doe.gov/research/coal/energy-systems/fuel-cells

SOFC Program – FY15 Awards

FOA-0001229: SOFC Innovative Concepts and Core Technology Research				
Topic Area 1 - Innovative Systems				
LG Fuel Cell Systems	Advanced Materials and Manufacturing Processes for MW-scale SOFC Power Systems fo Improved Stack Reliability, Durability and Cost.			
FuelCell Energy	Innovative SOFC Technologies			
General Electric	Development of a Thermal Spray Redox Stable, Ceramic Anode for Metal Supported			
Redox Power Systems	High Power, Low Cost SOFC Stacks For Robust And Reliable Distributed Generation			
U.C. San Diego	Innovative Versatile and Cost-Effective Solid Oxide Fuel Cell Stack Concept			
Topic Area 2 - SOFC Core 1	Technology Technology			
Acumentrics	Matrix Study of Aged SOFC Performance and Materials Degradation			
Boston University	Processing of SOFC Anodes for Enhanced Intermediate Temperature Catalytic Activity at High Fuel Utilization			
Georgia Tech	Low-Cost, Durable, Contaminant-Tolerant Cathodes for SOFCs			
Kettering University	LSCF-CDZ Composite Cathodes for Improved SOFC Electrical Performance			
MIT	Self-regulating surface chemistry for more robust highly durable solid oxide fuel cell cathodes			
Montana State University	Enhancing High Temperature Anode Performance with 2° Anchoring Phases			
Tennessee Tech. University	Development of Low-Cost, Highly-Sinterable, Co-Free (Ni,Fe)3O4 Spinel-Based Contact Materials for SOFC Cathode-Side Contact Application			
University of Maryland	In-Operando Evaluation of SOFC Cathodes for Enhanced ORR Activity and Durability			
University of South Carolina	Developing Accelerated Test Protocols and Tuning Microstructures of the Common Materials to Improve Robustness, Reliability, and Endurance of SOFC Cells			
West Virginia University	Scalable Nano-Scaffold Architecture On the Internal Surface of SOFC Anode For Direct Hydrocarbon Utilization			
FOA-0001244: 400 kWe SOFC Prototype System Testing				
FuelCell Energy	SOFC Prototype System Test			

