

Alkali-Free Barium Borosilicate Viscous Sealing Glasses for Solid Oxide Fuel Cells

Cheol-Woon (CW) Kim and Joe Szabo

MO-SCI Corporation, Rolla, MO; ckim@mo-sci.com

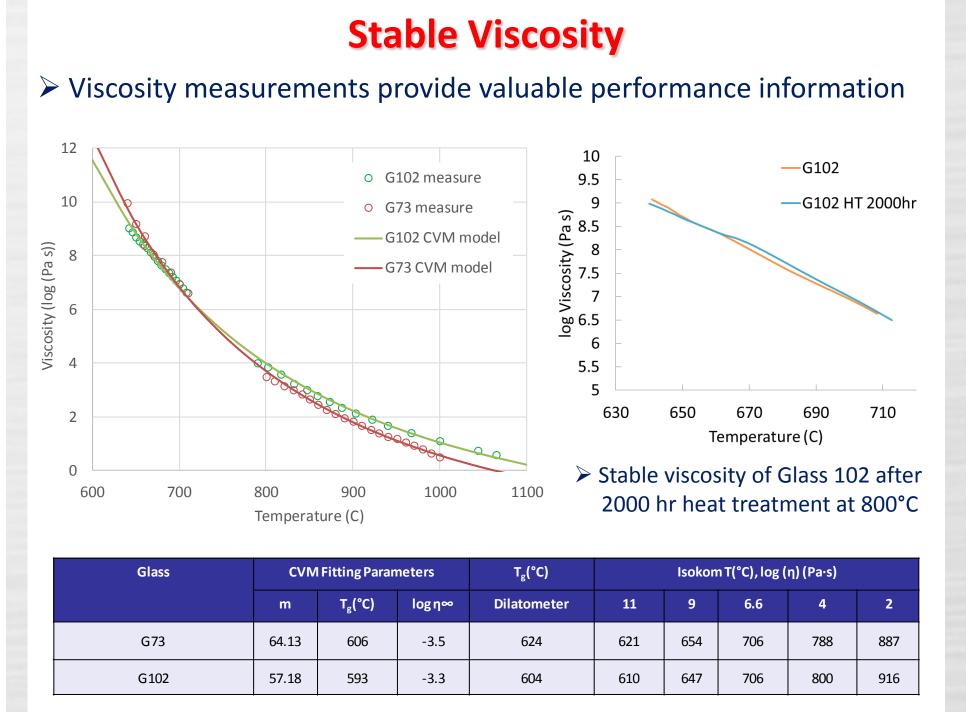
Richard K. Brow and Jen Hsien Hsu

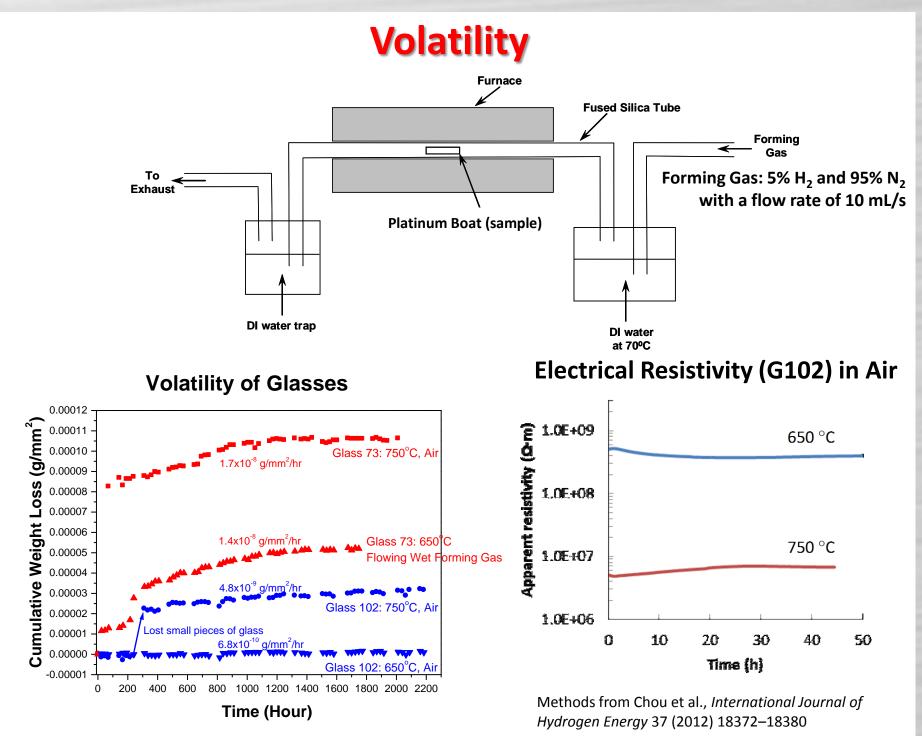
Department of Materials Science and Engineering and the Graduate Center for Materials Research Missouri University of Science and Technology, Rolla, MO; brow@mst.edu

DOE SBIR Phase II Contract # DE-SC0002491

Why Consider a Viscous Glass Seal for an SOFC?

- > Potential for lower thermal stresses through viscous relaxation at operational temperatures
 - Less critical that seal has CTE mismatch to dissimilar materials
- > Potential for 're-sealing' at operational temperatures through viscous flow
- > Potential solution for the flatness and/or parallelism issue of (planar) cells for large scale SOFCs


Objectives


- > Develop glass compositions that exhibit stable thermomechanical/ thermochemical properties, including viscosity, for use as seals for SOFCs Requisite Thermal and Physical Properties
 - a) Long-term stability in viscosity (650-850°C)
 - b) T_g: <650°C: thermal stress will be relieved
 - c) T_{soft}: <650°C: requisite flow for re-sealing behavior
 - d) T_{Liq}: <800°C (as low as possible): a small volume fraction of crystals
- e) CTE(RT-subT_g): $10-12.5\times10^{-6}$ /°C (YSZ-SS441)
- Conduct hermetic sealing tests
- > Characterize thermochemical reactions

Promising Compositions Were Identified

> Preferred compositions exhibit promising sealing behavior

	Phase II			
	Glass 73	Glass 75	Glass 77	Glass 102
Glass system	BaO-RO-Al ₂ O ₃ -B ₂ O ₃ -SiO ₂			
T _g (°C) measured from CTE curve	624	623	625	604
Dilatometric T _s (°C)	640	650	656	639
CTE 40-500°C (/°C)	8.48x10 ⁻⁶	8.17x10 ⁻⁶	9.25x10 ⁻⁶	7.25x10 ⁻⁶
Liquidus T (°C)	800	810	810	Non-Crystallizing

Re-Sealing Tests-cont. (ex-situ)

3.6

5.0

5.8

6.8

3.0

4.0

4.6

4.6

5.2

5.4

5.5

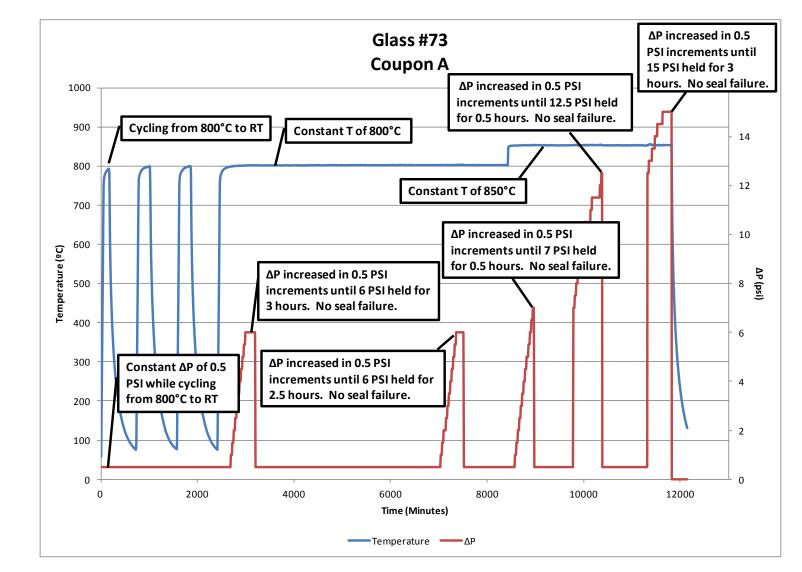
5.6

5.8

Summary of re-sealing tests (ex-situ)

Temperature | Time (hr) | Viscosity, log n

2


2

0.5 PSI Wet Forming Gas on Metal Side Wet Forming Gas Sweep on NiO/YSZ Side Glass 73 seal has survived 103 thermal cycles (750°C to RT; cooling rate ~5°C/min, heating rate ~13°C/min) in dry air and wet forming gas at a differential pressure of 0.5 psi (26 torr) over the course of >3,500 hours without failure and the test was deliberately terminated for analysis Glass 102 Thermal Cycling at Constant Pressure (ΔP=0.5 psi) ➤ G102 seal has survived 148 thermal cycles (800°C to RT; cooling rate ~5°C/min, heating rate ~13°C/min) in dry air and wet forming gas at a differential pressure of 0.5 psi (26 torr) over the course of >5,000

Hermetic Sealing Tests

Re-Sealing Tests

> Tried to break a seal by fast cooling as possible in the furnace, but no seal failure ➤ Glass 73-Coupon: No seal failure up to 15 psi, 850°C

Re-Sealing Tests (ex-situ)

Glass 73-Coupon: Thermally cracked and healed

Seal originally found Glass seal deliberately cracked by Crack healed after re-heating high cooling rate quench (>25°C/s) to 725°C for 2 hrs

750

725

700

850

800

775

773

750

744

740

G73

G102

5.8 Not healed (1 test)

G102 crack healed after re-heating to >744°C for 2 hrs

Observation

(# of experiments)

Healed (6 tests)

Healed (2 tests)

Healed (3 tests)

Healed once, but

not a second time

Healed (1 test)

Healed (2 tests)

Not healed (2 tests)

Not healed (1 test)

Viscosity, log

η (Pa-s)

3.6

5.0

5.8

3.0

4.0

4.6

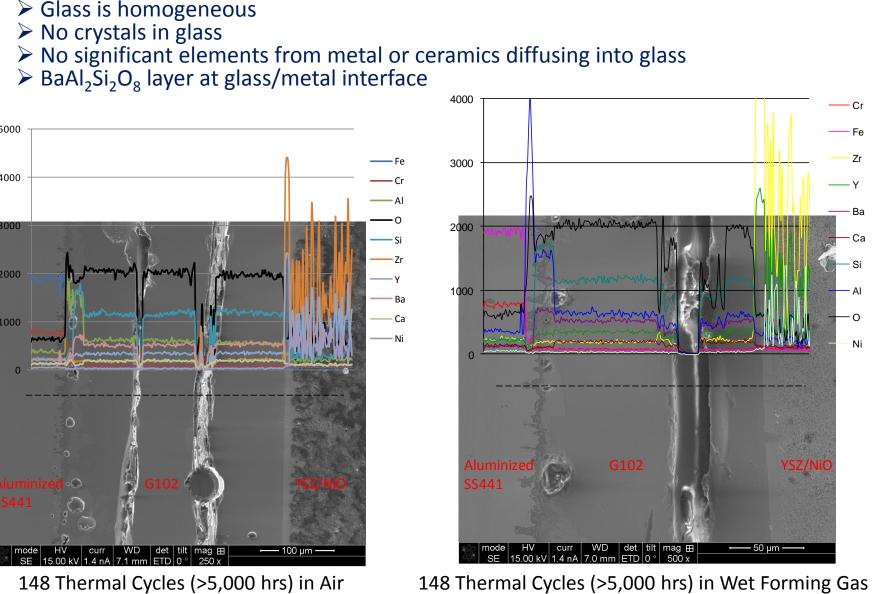
4.6

5.2

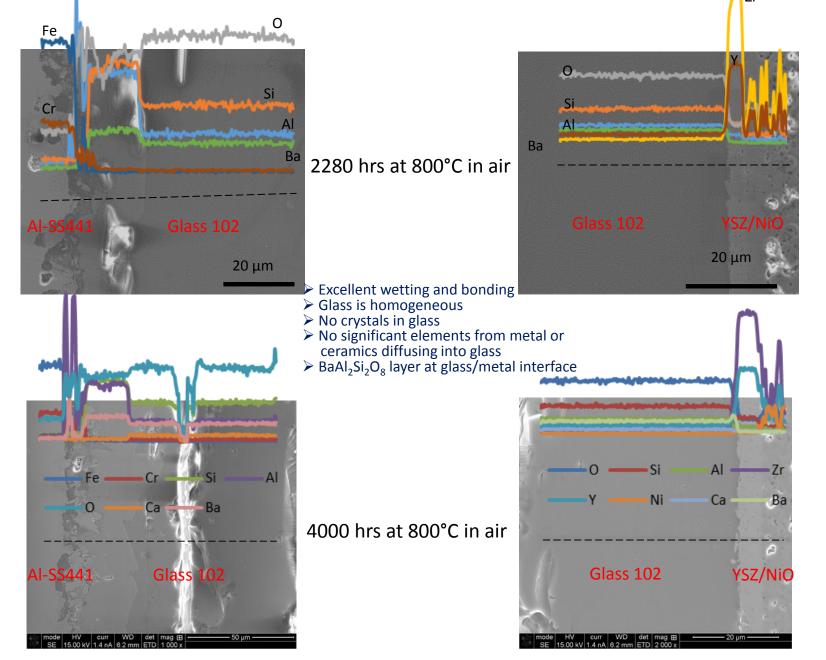
5.4

5.5

5.6


Long-Term Reactivity Characterization-thermally cycled

—_Temperature —_△P


> Excellent wetting and bonding to both aluminized metal and YSZ

hours without failure and the test was

deliberately terminated for analysis

Long-Term Reactivity Characterization-isothermal

Crystal Growth Kinetics Depend on Alumina Content Ba-borosilicate base glass 8 mol% alumina 25 μm heat treatment temperature 0 mol% alumina Al₂O₃ (% mol added) -★- BaSi₂O₂ - ● BaAl₂Si₂O₈ 1E-10 -12 14 01.3 3 5 8 11 15 Al₂O₂ added (mol%) Al_2O_3 (mol%) Crystal growth rates at 850°C

Summary

- ➤ We have developed an alkali-free Ba-borosilicate glass that resists crystallization under SOFC operational conditions
- ➤ We have produced hermetic seals with SOFC components
 - survive thermal cycling
 - reseal when thermally shocked

G102 cracked by thermal quenching

> These glasses can react with aluminized stainless steel and celsian (BaAl₂Si₂O₈) will form under SOFC operational conditions

Acknowledgements

- > SECA
- ➤ DOE SBIR Phase II Contract # DE-SC0002491
- > DOE Project Officer: Dr. Joseph Stoffa, NETL
- ➤ Dr. Yeong-Shyung Matt Chou/Dr. Jeff Stevenson, PNNL