

Prediction of SOFC Performance via Multi-Physics Simulation Tool with Realistic **Microstructure Properties**

Tao Yang^{1,2}, Ismail Celik^{1,2}, Hayri Sezer^{1,2}, Harry Finklea^{1,3}, Kirk Gerdes¹ ¹National Energy Technology Laboratory, Morgantown, WV,

²Mechanical and Aerospace Engineering Department, West Virginia University, Morgantown, WV ³Bennett Department of Chemistry, West Virginia University, Morgantown, WV

Introduction

- Simultaneous calibration of polarization curves and impedance behavior is necessary for SOFCs model developments, but was largely neglected in the literature.
- Tens of parameters are nonlinearly coupled in the multi-physics model of SOFCs, ٠ so that large number of datasets are needed for model calibration.
- The accurate prediction of cell performance at different air/fuel utilization conditions, as well as different working loads, should also be considered for model developments.
- The present study aims to find the way of determining the essential properties of fuel cells via efficient combination of experiments and numerical simulations.

Model Description

Governing Equations

Charge conservation

Electrode phase

 $a_{\rm int}C_{DL}\frac{\partial\varphi_e-\partial\varphi_i}{\partial t}+\nabla\cdot(-\sigma_e\varphi_e)=i_F$

Electrolyte phase

 $a_{\rm int}C_{DL}\frac{\partial\varphi_e - \partial\varphi_i}{\partial t} + \nabla \cdot (-\sigma_i\varphi_i) = -i_F$

Dense electrolyte

 $\nabla \cdot (-\boldsymbol{\sigma}_{i}\boldsymbol{\varphi}_{i}) = 0$

Species transportation

$$\varepsilon \frac{\partial \phi}{\partial t} = \nabla (D_{\phi}^{eff} \phi) - S_{\phi}$$

Butler-Volmer type equations

$$i_{Fa} = i_{0a}l_{TPB,a} \left(P_{H_2}\right)^a \left(P_{H_2O}\right)^b \left\{\exp(\frac{\alpha F \eta_a}{RT}) - \exp[-\frac{(1-\alpha)F \eta_a}{RT}]\right\}$$
$$i_{Fc} = i_{0c}l_{TPB,c} \left(P_{O_2}\right)^a \left\{\exp(\frac{\alpha F \eta_c}{RT}) - \exp[-\frac{(1-\alpha)F \eta_c}{RT}]\right\}$$

$$D_{\phi}^{eff} = \frac{\varepsilon}{\tau^n} \left(\frac{1 - \alpha_{im} y_i}{D_{i,m}} + \frac{1}{D_{Ki}} \right)^{2/3}$$

Effective conductivity

$$\sigma_i^{eff} = \frac{V_i}{\tau_i^2} \sigma_{i0}$$

Microstructure Properties

Length of triple phase boundary (L.C.R. Scheneider et al. 2006)

$$\Phi_{TPB} = \frac{3D}{r^2} \sqrt{1 - \left(\frac{D_0}{D}\right)^{1/3}} \Phi_{io} (1 - \Phi_{io}) Z$$

Interface area between ion-conducting and electron-conducting phase (A.M. Gokhale et al. 2009)

Contact

$$a_{\text{int}} = \frac{r}{2} l_{TPI}$$

Tortuosity (M. Matyka et al. 2008)

Email: ismail.celik@mail.wvu.edu

 $\tau_i = V_i^{-p}$

Calibration Procedures for Button Cell

eous calibration of polarization curves and impedance behavio **Detailed Analysis of Processes Inside Electrodes**

values from EPA refined values in simulations

 7.0×10^{2}

 2.66×10^{10}

0.425

0,75

0.25

50 50

4.63×10

0.4

6.34×10

 1.43×10^{8}

 7.0×10

0.425 0.75

3.075 - 10

 2.66×10^{3}

0.25 0.23

 1.29×10

 1.02×10^{8}

1.66 0.34

0.46

Parameters Thickness of anode (µm

Thickness of anode (µm) Thickness of anode (µm) Thickness of anode (µm)

Anode conductivity $(\Omega^{-1} \cdot m^{-1})$

Electrolyte conductivity $(\Omega^{-1} \cdot m^{-1})$

Cathode conductivity $(\Omega^{-1} \cdot m^{-1})$

Reference specific capacitance at Ni/YSZ interface (F · m-3

exponent 'a' in the anode exchange current relation exponent 'b' in the anode exchange current relation

volumetric exchange current density in cathode i_{0c} (A · m⁻³)

volumetric exchange current density in anode i0a (A · m

Reference specific capacitance at LSM/YSZ interface (F · m

exponent 'm' in the anode exchange curr Porosity in support layer Porosity in active layer

Performances with different working loads and impedance of electrode

Effects of Using Partial Data Sets

Results with calibration of polarization curves only

Results with calibration of impedance behavior only Further Application (Effects of Infiltration)

Calibrated results of baseline cell

- A physics-based tool, combining experiments, empirical polarization analysis, and multi-physics ٠ numerical simulations, is developed for prediction and analysis of SOFC performance.
- ÷ Experimental datasets are analyzed in conjunction with empirical polarization analysis to extract essential information of the fuel cell, and finally refined by multi-physics numerical simulations.
- Microstructure properties are incorporated for in-depth understanding of processes within electrodes. ÷

Conclusions

- The present study demonstrates that at least three different air/fuel flow conditions are needed to produce a set of complete data for better understanding of the processes occurring within SOFCs.
- This procedure can also predict the SOFC performances for different utilization cases and working loads, as well as cell performance due to microstructural changes, such as infiltration and degradation.

Acknowledgement

- As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000.2.621.248.001.
- The authors wish to explicitly thank the group of Dr. Paul Salvador of Carnegie Mellon University for providing the microstructure datasets.
- The authors also wish to explicitly thank the group of Dr. Shiwoo Lee of NETL for providing the datasets of baseline and Co-infiltrated cell

(S. Pakalapati et al.)

⊳

٠

Results

variables

 $(A \cdot m^{-3})$

 $i_{0c} (A \cdot m^{-3})$