Multiple Oxygen Incorporation Processes in Porous Lanthanum Strontium Ferrite Thick Films Observed by the Curvature Relaxation (kR) Technique Mr. Yuxi Ma and Dr. Jason D. Nicholas

Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, Michigan 48824

1. Introduction

La_{0.6}Sr_{0.4}FeO_{3-δ} (LSF) is a mixed ionic electronic conductor (MIEC) usually used as cathode in Solid Oxide Fuel Cells (SOFCs). Under operating conditions, LSF easily undergoes the following reaction [1]:

$$\frac{1}{2}O_2 + 2Fe'_{Fe} + V_0^{"} \rightarrow 2Fe_{Fe} + O_0^{X}$$

The defect reaction expands the lattice, introducing chemical stress into the material. This mechano-chemical reaction can be described by the following equation[2]:

$$\in_c = \alpha_c \Delta \delta$$

where \in_c represents the chemical strain, α_c represents the chemical expansion coefficient, and δ represents the oxygen nonstoichiometry. Therefore, with an oxygen partial pressure change, a LSF film on an inert substrate will produce a change in sample curvature as the LSF equilibrates to a new level of oxygen nonstoichiometry. For a dense thin film | inert substrate bilayer sample [3]:

3. Porous Thick Film $La_{0.6}Sr_{0.4}FeO_{3-\delta}(LSF)$ Preparation

$$\frac{\kappa - \kappa_0}{\kappa_\infty - \kappa_0} = \frac{\delta - \delta_0}{\delta_\infty - \delta_0} = 1 - \exp\left(-\frac{kt}{h_f}\right)$$

For a porous thick film | inert substrate bilayer sample [4,5]: $\frac{\kappa - \kappa_0}{\kappa_\infty - \kappa_0} = \frac{\delta - \delta_0}{\delta_\infty - \delta_0} = 1 - \exp\left(-\frac{kt}{\frac{1 - V_V}{S}}\right) = 1 - \exp\left(-\frac{t}{\tau}\right)$

where t represents time; h_f represents the film thickness; κ represents the instantaneous curvature; κ_0 represents the initial curvature; κ_{∞} represents the final curvature after po₂ equilibration; S_v represents the volume specific pore surface area; V_V represents the volume fraction porosity and τ represents the time constant for curvature relaxation.

