Nanocomposite Electrodes for a Solid Acid Fuel Cell Stack Operating on Reformate

Tom Zawodzinski Oak Ridge National Laboratory

<u>Alex Papandrew</u> University of Tennessee, Knoxville

16th Annual Solid Oxide Fuel Cell WorkshopPittsburgh, PAARPA-E REBELS ProgramJuly 14, 2015

ARPA-E REBELS Category 1 Project

Project Outline 100 W stack prototype

CsH₂PO₄ electrolyte

Reformed natural gas fuel

Major Objectives Electrical Efficiency >50%

Pt loading $< 0.1 \text{ mg/cm}^2$

Current > 225 mA/cm² at 0.78 V

Superprotonic Solid Acids

Hydrogen-bonded ionic solids

Polymorphic phase transitions at T>100 °C

H⁺ conductivity increases >1000x across phase transition Water soluble

National Laboratory

Crystal Symmetry Controls H⁺ Conductivity

Paraelectric (RT)

Superprotonic (>228 °C)

4 Oxygen sites per unit cell4 H-bonds (----) possible per tetrahedron

24 Oxygen sites per cell, each with 1/6 occupancy
6 H-bond (----) orientations possible per tetrahedron

Proton Transport in Superprotonic CDP

Bulk proton transport includes both **oxyanion reorientation** and **hydrogen bond transfer**

Temperature and Humidity Control Requirements

AK RIDGE National Laboratory

Solid Acid Fuel Cells (SAFC) SAFCell CsH₂PO₄ Electrolyte, Pt Catalysts

SAFCell SAFC Products 10 W to 1,500 W stacks

Aluminum and stainless steel hardware, polymer seals

ORNL Natural Gas Reformer

- \circ Light-off T > 450 °C
- O/C ratios control reforming process
 - low: steam reforming (endothermic)
 - $_{\circ}$ low CH₄ conversions, H₂ yields
 - high: partial oxidation (exothermic)
 - $_{\circ}~$ high CH_4 conversions, H_2 yields

Reformer Efficiency Greater Than 80%

Optimal efficiency at O/C = 1

- 85% fuel energy converted to H_2 (LHV basis)

- 98% inlet fuel energy converted to H_2 if all CO shifted to H_2 over downstream WGS catalyst

WGS catalysts can be integrated into MEA

System flows, Compositions, Temperatures

SAFC Anodes

A. B. Papandrew, D. L. Wilson III, N. M. Cantillo, S. A. Hawks, R. W. Atkinson III, G. A. Goenaga, and T. A. Zawodzinski, Journal of the Electrochemical Society, 161,

F679 (2014)

CO, CO₂ and H₂S Tolerance Stack Level

- Minimal effect of impurities on performance
 - Mostly H₂ dilution effect
 - ▶ 20 cell stack (2" MEA)
- Gas flow/compositions
 - Cathode:
 - 1.5 LPM air + 0.3 bar H_2O
 - Anode
 0.6 LPM + 0.3 bar H₂O
- Stack stabilty under high CO & H₂S confirmed
 - ▶ 5.3% CO & 200ppm H₂S

State-of-the-Art SAFC Cathode Pt is the ORR catalyst and the sole electronic phase

SEM-FIB Tomography Reconstruction

Electrolyte Surface Area Has Large Effects on Cathode Performance

C.R.I. Chisholm, D.A. Boysen, A. B. Papandrew, et al, Electrochem. Soc. Interface 18, 53-59 (2009).

Baseline Cathodes at Lower Pt Content Sub-critical Pt coating limits e⁻ pathways 1100 - 0.88 mg/cm² (5 wt%) 1000 900 ------ 3.50 mg/cm² (17 wt%) ⁻ R-Free Voltage [mV] -7.00 mg/cm^2 (29 wt%) 800 700 600 500 400 300 200 800 1000 1200 0 200 600 400 Current Density [mA/cm²] A.B.Papandrew, C.R.I.Chisholm, R.A.Elgammal, M.M.Ozer and National Laboratory S.K.Zecevic, Chemistry of Materials, 23, 1659 (2011)

Advanced Cathode Architecture

"Mixed conductor" eliminates the problem of conductivity loss at low Pt content

Advanced Cathode Architecture

Advanced Electrodes Dramatically Reduce Pt Content

Very recent results suggest improvement to parity with SOTA electrode performance at 0.7 mg cm⁻²

Carbon Corrosion Must Be Confronted

Chemical stability of MWNTs is adequate...

...But *electrochemical* stability is the issue

National Laboratory

TGA, air, 10 °C/min $C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^-$ 100 Corrosion Current [A] ~575 °C 1.0 V, 250 °C, 0.012 80 ¦~450 °C 75 °C dew point, N₂ 0.008 g10 0517FC3 A ğ10_0609FC2_A Oplus 0518FC2 A Mass [%] 60 0.004 25000 50000 graphitized 0 40 Elapsed Time [s] **MWNTs** 250^{¦°}C % Carbon Loss 60 20 **MWNTs** 40 g10 0517FC3 ğ10 0609FC2 Õ+ 0518FC2 20 800 400 600 200 1000 С Temperature [C] 25000 50000 Ω Elapsed Time [s]

Pt Particles Coarsen During Operation

Intensity [arb. units]

Advanced Cathodes Over 100+ hrs

Summary

- ORNL, UTK, and SAFCell are developing a reformed NG fuel cell system based on the CsH₂PO₄ electrolyte
- Anodes have low impedance and are impurity tolerant
- Cathode activity is a key obstacle
- Nanocomposite electrode architectures using MWCNTs suggest 75% reduction in Pt is possible

Acknowledgements

Gabriel Veith Josh Pihl Beth Armstrong Dave Geohegan Alex Puretzky Wesley Tennyson Gerd Duscher Ramez Elgammal Ondrej Dyck Calum Chisholm Hau Duong Mandy Abbott Fernando Campos

Project Summary

Timeline

Project start date: 10/1/14 Project end date: 9/30/17* *project continuation determined annually by DOE Percent complete: 20%

Partners

University of Tennessee

SAFCell, Inc.

Budget

Total project funding: \$3050k Federal share: \$2750k Recipient share: \$300k

FY15 amount: \$1002k

Barriers

Reduction of Pt loading Target: 0.1 mg/cm²

Cathode Activity Target: 225 mA/cm² at 0.78 V

