

A Bifunctional Ceramic Fuel Cell Energy System

An Update on Reversible Air-electrodes Development

PI: Prof. Kevin Huang University of South Carolina

Award#: DE-AR-0000492

About this **REBELS** Project

- Demonstration of power generation and energy storage functionality of the new fuel-cell/battery hybrid system at bench-scale
- Development of reversible IT-air-electrodes
- Development of IT-electrolytes
- Development of Fe-based energy storage materials
- Development of computational models

The Battery Configuration

Energy Environ. Sci., 2011, 4, 4942–4946

The New Battery Chemistry

Overall Reaction:
$$Me + \frac{x}{2}O_2 \xrightarrow[Charge]{Discharge} MeO_x$$

Solid Oxide Metal Air Redox Battery (SOMARB)

Working Principle: Discharging

Working Principle: Charging

A Typical Performance of the SOMARB Battery

Chem. Comm., 2014, **50**, 623.

Chem. Comm., 2014, 50, 623.

Distinguished Advantages

- All ceramic components
- Transfer of two electrons by O²⁻
- Only gaseous O₂ involved in ORR and OER
- Energy storage with high-capacity chemical redox bed
- Energy cycling at high rates
- Independent power and energy
- Adaptable to new metal-air chemistries
- Scalable, sustainable & safe

A Reversible Air-electrode of Choice: $SrCoO_{3-\delta}$

Important Features:

- Highly oxygen catalytically active at IT range
- Unstable at elevated temperatures: losing oxygen to decompose into Sr₂Co₂O₅:

$$SrCoO_{3-\delta} = SrCoO_{2.5} + (0.5-\delta)/2O_2$$

Making $SrCoO_{3-\delta}$ stable:

- Phase stabilization by A- and B-site donor doping
- Morphological stabilization of nanostructures by atomic layer deposition

Phase Thermal Stability – SYC Series

Conductivity Stability – SYC Series

Conductivity vs T – SYC Series

TGA and TPD: SYC Series

Oxygen intake and release are reversible

Conductivity vs Po₂ – SYC Series

T<350°C,

$$\frac{1}{2}O_{2(g)} + V_{O''} = O_{O}^{\times} + 2h$$

T>350°C, $O_0^{\times} + 2h^{\cdot} = \frac{1}{2}O_{2(g)} + V_0^{\cdot}$

Higher order of reaction m

Lower order of reaction m

Charge neutrality: $x + 2\delta + p = n$

Phase Thermal Stability – SCN Series

<u>SCN10: SrCo_{0.9}Nb_{0.1}O_{3-δ}</u>

Conductivity Stability – SCN Series

Conductivity vs T – SCN Series

TGA and TPD: SCN Series

Conductivity vs Po₂ – SCN Series

Surface O₂ Exchange Coefficient

-11.5 -11 -11.6 -12 -11.7 -13 -11.8 -14 =1.3 kJ/mol ln(k_{ex}), cm/s Ink (cm/s) -11.9 SCN10 -15 LSCF -12.0 =5.7 kJ/mol 100x -16 -12.1 $\text{SrCo}_{0.9}\text{Nb}_{0.1}\text{O}_{3\text{-}\delta}$ E_=6.2 kJ/mol -17 -12.2 SrCo_{0.9}Nb_{0.1}Fe_{0.1}O_{3-δ} SrCo_{0.9}Nb_{0.1}Fe_{0.2}O_{3-δ} -18 -12.3 -19 SrCo_{0.9}Nb_{0.1}Fe_{0.3}O_{3-δ} -12.4 -20 -12.5 0.0014 0.0011 0.0012 0.0013 0.0015 0.0016 1.2 1.5 1.0 1.1 1.3 1.4 1.6 1000/T (1/K) 1/T, 1/K

Oxygen Isothermal Isotope Exchange

By E. Wachsman's group at University of Maryland

Microstructure of a Nanostructured SYC

Performance of Nanostructured SYC Cathod

Nanostructured SYC as an ORR/OER Catalyst

Performance Improvement by SYC Catalyst

Acumentrics 50-cm long anode-supported tubular YSZ cell Provided by Dr. Doug Schmidt and Dr. Wensheng Wang

Decorating LSCF NPs on Commercial LSCF

Summary

- Integration of a redox chemical bed can enable energy storage functionality of conventional RSOFC
- Donor doped SrCoO $_{3-\delta}$ oxygen-deficient perovskites are a class of promising reversible ORR/OER catalysts for IT-RSOFCs
 - Phase stabilization by chemical doping
 - Nanostructuring by solution infiltration
 - Morphological stability by ALD
- Decorating nanoscaled SYC ORR catalysts on a commercial IT-SOFC cathode LSCF can be beneficial

Acknowledgements

- DE-AR-0000492 (ARPA-e REBELS project)
- DE-FE-0023317 (NETL SOFC project)
- Thanks to team members:
 - UT Austin: Prof. John Goodenough and Dr. Xuan Zhao
 - UMD: Prof. Eric Wachsman and Dr. Gil Cohn
 - Acumentrics: Dr. Doug Schmidt and Dr. Wensheng Wang
 - USC: Dr. Fengzhan Si, Dr. Jie Wang, Dr. Long Jiang
- Thanks to ARPA-e team:
 - Dr. John Lemmon, Dr. Scott Litzelman, Dr. John Tuttle