

Reliable SOFC Systems

Hossein Ghezel-Ayagh 16th Annual SECA Workshop Pittsburgh, PA July 14-16, 2015 Ultra-Clean | Efficient | Reliable Power

Introduction

- FCE SECA Program Team Members
- SOFC Technology Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results
- Proof-of-Concept Module (PCM) Development
 - 50 kW PCM System
 - Stack Module
- SOFC Technology Applications
- Summary

Integrated Fuel Cell Company

Research & Development

Design megawatt–class distributed power generation solutions

- Global fuel cell technology platform
- Robust intellectual property portfolio
- Leveraging core technology for opportunities in new markets

Project development – Direct Sales Global manufacturing profile (200+ MW capacity) Engineering, Procurement and Construction

Services

Operate & Maintain power plants

- Over 100 DFC[®] plants operating at more than 50 sites in 9 countries
- >3.6 billion kWh ultra-clean power produced
- > 300 MW installed/backlog

SOFC Cell and Stack Technology Background

- Planar anode supported cells (up to 1000 cm²)
- Wide window of operating temperature, from 650°C to 800°C
- Stacks with integrated manifolds and cross-flow gas delivery
- Ferritic stainless steel sheet metal interconnect
- Compressible ceramic gasket seals
- Capable of in-stack Direct Internal Reforming (DIR) of methane to hydrogen
- Standardized stack blocks configurable into stack towers for various power applications

FCE/VPS SOFC Development Facilities

√ersa Power Systems

FuelCell Energy

Materials Laboratory and Bench Scale Fabrication

Facilities for up to 400 kW Stack Tests

Outdoor Pads for 400 kW Grid Connected System Tests

SOFC Materials & Components R&D

Pilot Manufacturing & QC

36 Test Stations: Single Cell to 25 kW Stack Testing

Development of SOFC technology suitable for ultra-efficient central power generation systems (coal and natural gas fuels) featuring >90% carbon dioxide capture

Conduct cell & stack R&D focusing on performance, reliability, cost and manufacturing enhancements

Fabricate and test fuel cells & stacks including endurance testing (≥1000 hours) under system-relevant operating conditions

Design, build and operate 50-200 kW demonstration systems using natural gas fuel to validate stack operation in system environment

Develop concept system design and stack module for a MW-class power plant

Introduction

- FCE SECA Program Team Members
- SOFC Technology Program Overview

Progress in SOFC Technology

- Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results
- Proof-of-Concept Module (PCM) Development
 - 50 kW PCM System
 - Stack Module
- SOFC Technology Applications
- Summary

Cell Technology Overview

Component	Materials	Thickness	Porosity	Process
Anode	Ni/YSZ	0.3 - 1 mm	~ 40%	Tape casting
Electrolyte	YSZ	5 - 10 μm	< 5%	Screen printing
Cathode	Conducting ceramic	10 - 50 μm	~ 30%	Screen printing

Cell Development Path

"TSC" Manufacturing Process

Anode Development

- Reduce Cell Thickness
- Enhance Performance at Higher Fuel Utilization
- Improve Performance at Lower Temperature
- Enhance Cell Mechanical Properties and Robustness

Cathode Development

- Enhance Performance and Endurance
- Lower Operating Temperature
- Increase Operating Window

Scale Up & Manufacturing Development

- 121 cm² →1000 cm²
- Established Cell Baseline at 550 cm²
- > 6000 Cells (25 x 25 cm²) Fabricated
- Production Volume of 500 kW (annual) & >95% Fabrication Yield Demonstrated

Cell technology has excellent performance in a wide temperature window, achieving 2W/cm² at 800°C

Long-term cell endurance was verified in >2 years of operation with a 0.32%/1000h performance degradation

Cell Manufacturing QC Improvements

Previous Hand Held Cell Thickness Measurement Device

New Cell Thickness QC Station

- Improvements in the quality of the manufactured cell components and assembly were implemented
- New cell thickness measurement station was designed & implemented, simulating thickness when compressed in stack
- Qualification results:
 - Total Gage
 Reproducibility and
 Repeatability (Gage R&R)
 of 6% was archived
 (Desired target < 30%)
 with 0.04 mm total
 tolerance

Gen 1.0 Cr Tolerant Technology

Cobalt Coated Interconnect

Chromium Getter Materials

Single Cell Test of Gen 1.0 Cr Tolerant Technology

Optimization of Gen2 Cr Mitigation Technology

 Higher Cr getter loading leads to 2% lower initial performance, but better tolerance to Cr poisoning

Effect of Anode Support Thickness and Density

Effect of Anode Thickness and Density on Fuel Utilization

Introduction

- FCE SECA Program Team Members
- SOFC Technology Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing

Stack Development

- Scale-up and Test Results
- Proof-of-Concept Module (PCM) Development
 - 50 kW PCM System
 - Stack Module
- SOFC Technology Applications

Summary

Stack Development Path

6-cell short stack

16-cell short stack

Performance Improvement

- Higher power density
- Higher fuel utilization
- Higher direct internal reforming

stack block

Cost Reduction

 Simplified stack design/part reduction

Endurance Enhancement

- Improved stack thermal and flow management
- Incorporated new cell materials
- Incorporated advanced flow media

stack block

Scale Up

- Scaled up cell active area from 121 to 550 cm²
- Scaled up from 28 cells up to 120 cells
- Stack power from
 1 kW to 16 kW

stack block

stack block

19

Baseline Stack Building Block

Operating Conditions			
Fuel Utilization	68%		
Air Utilization	15 – 40%		
In-Stack Reforming	25 – 70%		
Stack Current	160 A (291 mA/cm²)		
Gross DC Electrical Power	~16 kW		

Cell Size	25 x 25 cm ²			
Active Area	550 cm ²			
Number of Cells	120			

Stack Manufacturing QC: Thickness Measurement

- Completed design, procurement and assembly of 2 new doublehinge QC stations
- Purpose: measure thickness for:
 - 1. Anode Tape and Seals
 - 2. Stack Metallics
- Qualification Results: Total Gage R&R <20% for all components implemented thus far as compared to 80% with prior measurement system
- Tools have been released to production and are being evaluated for thicknesses measurement for other repeat components and assemblies

Stack #97 with Improved Reliability

GT057235-0097, 16-cell Large Area Stack Average Cell Voltage

Stack #109 with Improved Reliability & Gen 1.0 Cr Tolerant Cell

GT057235-0109, 16-cell Large Area Stack

Voltage (V)

Tall Stack with Improved Reliability & Gen 1.0 Cr Tolerant Cell

SOFC Stack Cost Update

Cost Reduction Focus Areas

- **1. Stack Performance Increase**
 - Power Density increase
 - Improved thermal management

2. Material Reduction:

- Thinner cells and stack components
- Interconnect material reduction
- Eliminated intermediate plates

3. Manufacturing Process Changes & Optimization

- Interconnect manufacturing development
- Improved material utilization
- Automation

Future R&D activities are focused on manufacturing cost reduction, production yield increase, and lowering cell and stack materials cost

Tested Stacks Prior to Module Integration

Recently, four 120-cell stacks were built and conditioned to be utilized in a 50 kW Proof-of-Concept System Tests

Reproducibility of Four Stacks

TC1 Utilization Testing

All four stacks showed similar performance during the Factory Acceptance Tests

Introduction

- **FCE SECA Program Team Members**
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results

Proof-of-Concept Module (PCM) Development

- 50 kW PCM System
- Stack Module
- SOFC Technology Applications

Summary

50 kW PCM System Design & Performance

	SOFC Gross Power	Normal Operating Conditions		Rated Power)FC Module
Air	DC Power	55.1	kW	60.3	kW	
	Energy & Water Input					
	Natural Gas Fuel Flow	4.9	scfm	5.4	scfm	!
	Fuel Energy (LHV)	80.8	kW	88.9	kW	
	Water Consumption @ Full Power	0	gpm	0	gpm	e 🖊
	Consumed Power					
	AC Power Consumption	2.6	kW	2.7	kW	• 🛶 i
	Inverter Loss	2.5	kW	2.7	kW	
	Total Parasitic Power Consumption	5.1	kW	5.4	kW	i
	Net Generation					1
Fuel Gas	SOFC Plant Net AC Output	50.0	kW	54.8	kW	i
	Available Heat for CHP (to 120°F)	17.8	kW	19.5	kW	
	Efficiency					ا لــــــــ
Startup Wate	Electrical Efficiency (LHV)	61.9	%	61.7	%	Loop
	Total CHP Efficiency (LHV) to 120°F	83.9	%	83.7	%	ess Loop

 50kW PCM system is designed to enable stack reliability testing under realsystem conditions (Q1-2015).

50kW PCM System

- Factory assembled stack module using four baseline 120 cell stacks
- System fabricated as a single 14.5' L x 7' W x 10' H skid
- Field installable enclosure

FuelCell Energy 100kW SOFC Modular Power Block (MPB)

100kW MPB architecture:

- Fully integrated hot BOP equipment within the module
- Integrated module-specific instruments significantly decrease wiring
- Reduced Cr evaporation protective coatings by >80%

BOP Materials Development: Chromia Volatility Tests

Test Setup

Back-scattered Electron Image (left) and Elemental Map (right) of Coated (A Type) 316 Alloy

Next Generation SubMW Class Power Plant

- FuelCell Energy
- System is designed with the capability to achieve 200 kW net ac
 - It houses (2) 100kW SOFC Module Power Blocks (MPB)
 - Skid sized as standard ISO 20' x 8' shipping container
 - Thermally integrated modules enable compact system design
 - 2.5X higher power density than 50kW Plant:
 - 50kW = 2.23 ft²/kW
 - $200kW = 0.88 \text{ ft}^2/kW$
 - Stack Module and BOP factory assembled & shipped as a single skid
 - First demonstration at 100 kW with a single module 33

Introduction

- **FCE SECA Program Team Members**
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results
- Proof-of-Concept Module (PCM) Development
 - 50 kW PCM System
 - Stack Module
- SOFC Technology Applications
- Summary

3 KW SOFC System

System Characteristics

-			
Dimensions, ft (lxwxh)	3.5x3x5		
	Natural Gas,		
Fuel Type	ADG		
ADG Fuel Flow, scfm	0.56		
Air flow, scfm	11		
Efficiency, % (LHV)	58.4		
Net Power Output, kW	3.2		

- SOFC Application Using Renewable
 Fuel
- Highly Compact
- Fuel Flexible and Water Neutral
- Unattended Operation with Remote Monitoring
- Grid Connected and Islanding Modes

DIGESTER

Demonstration Site: Cal-Denier Dairy Farm

Project Partners

GASTREATMENT FLOW 20-30 SCFM INLETH2S 1000-2000 PPM OUTLETH2S 100-300 PPM

Solid Oxide Electrolysis Cell (SOEC) Development

- FCE/VPS was awarded a new contract DOE-EERE for development of SOE Stack Technology with Ultra-High Electrolysis Current Density and Efficiency
- Objective is to exceed DOE 2020 water electrolysis stack efficiency target of 78% via an ultra-high electrolysis current density of more than 3 A/cm² at an upper limit voltage of ~1.6 V
- Demonstrated cell operation with >6,000 accelerated cycles (equivalent to >15 years of daily cycling) with < 0.03 mV/cycle</p>

Cell Performance at Ultra-High Current Density

kW-Class Stack Cyclic Test

Introduction

- FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Test Results
- Proof-of-Concept Module (PCM) Development
 - 50 kW PCM System
 - Stack Module
- SOFC Technology Applications

Summary

Achievements

• Developed Gen 1.0 Cr-mitigation strategies (interconnect coatings and Cr-tolerant materials) and validated the optimized materials sets over 10,000 hours of single-cell tests with 10% H₂O in cathode air • Accumulated stack build and testing experience by manufacturing over 750 stacks including >130 of the stacks based on large area (625 cm2) cells • Improved cell / stack manufacturing and enhanced Quality Control procedures to increase stack reliability and endurance. A 64-cell large area stack is validated at system operating conditions in test stand for 1 year Fabricated and factory tested 4 x 120 cell Large Area Stacks (LAS) for the 50 kW Proof-of-Concept (POC) System • Fabricated a highly integrated 50kW module design for testing of large-area full height stacks in system environment Initiated the design of a 200 kW SOFC system for demonstration testing of the next generation SOFC stack towers

The progress in SOFC technology was supported by:

- "SOFC Systems with Improved Reliability and Endurance", DOE/NETL Cooperative Agreement No. DE-FE0011691
- "Reliable SOFC Systems",
 DOE/NETL Cooperative Agreement No. DE-FE0023186

Guidance from NETL Management team: Joseph Stoffa, Travis Shultz, Briggs White, Patcharin Burke, Shailesh Vora, Heather Quedenfeld, and others at NETL.

