

Low-Temperature Solid Oxide Fuel Cells for Transformational Energy Conversion

ARPA-E Award No. DE-AR0000494

PI: Bryan Blackburn, Ph.D. Redox Power Systems, LLC 7/14/2015

Redox Cube

•25 kW, natural gas, stationary power system

- > 50% efficiency
- •Compact (~1 m³)
- •Lightweight (< 1000 lbs)

Introduction

• High Specific & Volumetric Power Density to Reduce Costs/Market Barriers

- High power densities at lower temperatures reduce costs and enable compact power systems
- Lower temperatures provide for better thermal cycling, rapid startup & load following (MYRDD '12)
- Appeal for reduced weight systems in commercial, defense, and consumer applications drives widespread adoption and leverages economies of scale to further reduce cost

Stack Performance Metrics	Proposed ARPA-E Targets
Size (kW)	1
Operating Temperature Range (°C)	300-500
Open Circuit Voltage (V/cell)	1.0-1.1
Current Density at 70% Nernst (A/cm ²)	≥0.2
Electric Efficiency at Rated Power (%)	≥54
Startup Time (minutes)	<10
Transient Response, 10-90% (minutes)	<1

ARPAE Collaborators

- Microsoft Inc. (datacenter, server rack embedded power)
- Nat'l Fuel Cell Research Center, UC-Irvine (*independent* test)
- Strategic Analysis Inc. (*techno-economic analysis*)
- Trans-Tech, Inc. (*production cell manufacturing*)
- University of Maryland (cell R&D)

Redox Additional Partnerships

- MTech (*incubator & business growth*)
- Colorado School of Mines (*fuel processing/system* expertise)

Relevance: Project Objectives

• To improve the performance/durability of Redox technology through the:

- development of an optimized bilayer electrolyte with increased open circuit potential (OCP) and thus greater fuel efficiency for natural gas fueled, LT operation of ≤500°C;
- optimization of compositions and nanostructures for the cathode to increase power density, and the anode to improve carbon- and sulfur-tolerance in hydrocarbon fuels;
- development of reduction-oxidation stable ceramic anodes for more robust stacks;
- use of a custom multiphysics model and advanced materials to optimize the performance of bilayer stack designs for LT operation; and
- development & demonstration of a 1 kW LT-SOFC stack with load following between 300-500°C for datacenter and distributed generation applications.

Approach Summary: LT-SOFC Stack

Increased Efficiency

- Dy/W stabilized Bi₂O₃ (DWSB):
 - * 70X conductivity of YSZ @ 500°C
 - * unstable at low PO₂ (fuel conditions)
- Sm/Nd doped CeO₂ (SNDC):
 - * > 10X conductivity of YSZ @ at 500°C
 - * electronic leakage in fuel conditions, lowers efficiency

- Solution: A bilayer of SNDC (fuel side) and DWSB, stops ceria electronic leakage & Bi₂O₃ decomposition
- <u>Goal</u>: Optimize total bilayer electrolyte thickness and relative thickness of SNDC & DWSB
 * maximize efficiency (increase OCP to 0.9-1.0V) & minimizing ASR for ~0.5 W/cm² (@ ~0.8V) at ≤ 500°C

• Higher Power Density

- Improve carbon/sulfur tolerance with catalyst infiltration into as-fabricated porous anodes (10 cm by 10 cm)
- Optimize LSM-DWSB cathode composition to increase power density (reduce cost)

Optimized stack designs for LT operation

- Integrate SNDC/DWSB bilayer Redox multi-physics model and use to optimize stack design
- Maximize internal versus external reforming
- Conductive ceramic anodes for more robust cells and stacks

1 kW stack demo for load following

- Bilayer cell performance maps for stack, feed results back to model for design optimization
- 1 kW_e stack demo for load following applications such as datacenters 7/14/15 REDOX POWER SYSTEMS, LLC

High Conductivity Electrolytes

- The conductivity of SNDC is 0.011 S/cm at 550°C
 *one order of magnitude higher than the target
 *confirmed by multiple synthesis routes
- XRD showed single cubic phase and fluorite structure

- The conductivity of DWSB is 0.09 S cm-1 at 500°C
 *<u>2X the Q2 target</u>
- Powders derived from different approaches have a nanoscale to submicron distribution.
- Future Work:
 - Evaluate new formulations for reduced cost while maintaining performance at lower temperatures

Improved Low Temperature Gaskets

Measures interfacial and bulk leakage with stagnant fuel flow

Measures only interfacial leakage with realistic fuel flow

Improved Low Temperature Gaskets

- Compiled data from multiple tests as a function of seal pressure
- Fuel leak rate < 2%

Load Following at Lower Temperatures

M5.3.1: Demo short stack (1-3 cells) using GDC cell from 550-600°C for load following

More Complex Load Profiles (Active Fuel Control)

- Fuel flow actively adjusted as cell power changes
 - 10cm by 10cm cell
 - Tested between 575°C and 500°C

Bilayer Thickness Optimization for Increased OCP

Bilayer Thickness Optimization for Increased OCP

M1.1.2: Demo button cell with optimized relative/total bilayer thickness for OCP~1V

Most recent results: OCV @ 500°C = 1.02 V

Bilayer Button Cell

Single Layer Button Cell

Advanced Low Temperature Cathodes

M2.1.1: Cathode ASR $\leq 0.7 \Omega$ -cm² at 500°C

- Currently working to further optimize microstructure
- Examine long-term stability at ≤500°C
- Scale up to commercial production using low cost techniques

7/14/15

Bilayer Cell & Stack Modeling

M5.2.1: Validation of LT-SOFC Model for Cell/Stack

REDOX POWER SYSTEMS, LLC

Inlet

middle

outlet

Channel 4

T (K)

830

Red-Ox Stable Ceramic Anodes

- New conductive ceramic anode materials compatible with low temperature stack designs
- Comparable conductivity with conventional nickel cermet anode materials
- Conductivity stable when cycling between air and reducing fuel environments

Red-Ox Stable Ceramic Anodes

• Porous anodes allow introduction of catalysts for enhanced low temperature catalytic activity

Early results show drastic improvements

Red-Ox Stable Ceramic Anodes

- Preliminary button cell results utilizing red-ox stable anode at 500°C (>0.4 W/cm² peak, ~0.28 W/cm2 @ 0.7 V)
- Other configurations (not shown) have achieved >1 V at 500°C, & ~0.55
 W/cm² at 525°C_____

Thank You

Questions?