An Alternative Low-Cost Process for Deposition of MCrAIY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

Ying Zhang Department of Mechanical Engineering Tennessee Technological University

University Turbine Systems Research Workshop October 21-23, 2014 West Lafayette, IN

Coating Development Need for IGCC (Integrated Gasification Combined Cycle)

 One of materials needs for advancement of IGCC power plants is to develop low-cost and effective manufacturing processes for application of new TBC/bond coat architectures with enhanced performance and durability in syngas/hydrogen environments.

(http://www.ge-7fa.com)

(http://www.aecengineering.com)

(Padture, et al., Science, 2002)

Bond Coat Choices

Bond coat choices

- Diffusion aluminide
- MCrAIY overlay (M = Ni, Co or a mixture of Ni & Co)
 - More independent of the substrate composition
 - Lower ductile-to-brittletransition temperature

 Depending on the bond coat choice and fabrication process the TBC failure mode can be quite different.

(Padture et al., Science, 2002)

Processes for MCrAIY Bond Coat Fabrication

- Current fabrication processes
 - Low-pressure plasma spray (LPPS)
 - Air plasma spray (APS) & high-velocity oxy-fuel (HVOF)
- Limitations of thermal spray processes
 - Line-of-sight, requiring complex robotic manipulation for complete coverage
 - Oxide content can be high in APS and HVOF coatings.
 - High porosity level in APS
- Alternative coating processes for bond coat fabrication
 - Electrolytic codeposition
 - Electrophoresis
 - Autocatalytic electroless deposition

Why Electro-codeposited MCrAIY Coatings?

- Electrolytic codeposition ("composite electroplating"): Fine powders dispersed in an electroplating solution are codeposited with the metal onto the cathode to form a multiphase coating.
 - Non-line-of-sight
 - Low cost (capital investment, energy consumption, powder waste)
 - Ability of producing homogeneous and dense coatings

Ni, Co or Ni-Co matrix

Superalloy Substrate

Very Limited Research on Electrolytic Codeposited MCrAIY Coatings

 Codeposition of CrAIY powder and a metal matrix of Ni, Co, or Ni-Co, followed by a post-plating heat treatment

(Foster et al., Trans. Inst. Met. Finish; 1985, Honey et al., J. Vac. Sci. Technol., 1986)

- A dense MCrAIY coating of ~125μm thick was reported.
- The process was later patented by Praxair, known as "Tribomet", and has been applied as the abrasive tip coating on first stage turbine blades.
- Lack of systematic studies
- No evaluation in syngas/hydrogen turbine environments

Electrolytic codeposition is a more complex process than conventional electroplating

It is generally believed that five consecutive steps are engaged:

- 1. Formation of ionic clouds on the particles
- **2. Convection** towards the cathode
- **3. Diffusion** through a hydrodynamic boundary layer
- 4. Diffusion through a concentration boundary layer
- 5. Adsorption at the cathode where the particles are entrapped within the metal deposit

- Particles (conductive or non conductive)
- Surfactant (ionic, non-ionic or organic)
- ***** 'Clouding' of particles by surfactants
- Clouding' of particles by cations
- O Deposited metal

(Celis, et al., J. Electrochem. Soc., 1987; Low et al., Surf. Coat. Technol., 2006)

Project Objectives

- Develop and optimize MCrAIY bond coats for syngas/hydrogen turbine applications using a lowcost electrolytic codeposition process
- Improve coating oxidation performance by reducing the sulfur impurity levels and by employing reactive element co-doping
- Evaluate the oxidation behavior of the new bond coat in water vapor environments
- Understand the failure mechanism of the new TBC/bond coat architecture

Key Research Components

Synergistic Effects of Electro-codeposition Parameters

- Type of electrolyte
- Current density
- pH
- Temperature
- Agitation
- Particle loading

- Particle composition/geometry/size
- Cathode position (plating configuration)
- Post-plating heat treatment

Electro-codeposition Experiments

- Substrate:
 - Ni-200 or René 80 discs
 - (17 mm in diameter, 1.8 mm thick)
 - ground to 600 grit
 - grit blasted with #220 Al₂O₃
- Anode: pure Ni plate
- Temperature: 50°C
- pH: 3.5
- Time: 2h
- Pre-alloyed powder
 - Laboratory: ball-milled CrAIY-based powder
 - Commercial: atomized CoNiAlY

Watts plating solution

Constituent	(g/L)	
Nickel sulfate	210-310	
Cobalt sulfate	0-12	
Nickel chloride	45-50	
Boric acid	30-40	
Sodium lauryl sulfate	2.0	

Conventional Configurations in Electro-codeposition

Vertical (Traditional Electroplating)

- Simple, more literature data
- Limited particle incorporation

Horizontal (Sediment Codeposition)

- Increased particle incorporation on the top surface
- Nearly no particles on the bottom surface

Rotating Barrel System

- A semi-permeable barrel that holds the specimen and powder
 - The electrolyte can diffuse through the membrane wall, while the powder is maintained in suspension in the barrel.
 - Uses significantly less powder, allowing a higher concentration if needed
- The barrel rotates along a horizontal axis during plating
 - More uniform coating and particle incorporation

(Honey et al., J. Vac. Sci. Technol., 1986)

Design and Setup of the Rotating Barrel at TTU

- Polypropylene barrel: 52-mm ID, 70-mm length
- Thin nylon membrane: with ~1 μm mesh size

Two-Step Coating Process to Form MCrAIYs

(Grushko et al., J. Alloys Compd., 2008)

Commercial Powder vs. TTU Powder

	Commercial	TTU
Composition (wt.%)	Co-32Ni-21Cr-8Al-0.8Y	Cr-37Al-1.7Y
Processing	Atomizing	Ball milling
Shape	Spherical	Irregular
Size (μm)	12.9	7.1
Density (g/cm³)	7.5	4.5

Powders with desired composition are not commercially available.

Barrel Codeposition Results

Effect of Barrel Codeposition Parameters

Higher particle incorporation for atomized powder

Particle incorporation increased with reduced rotating speed

Effect of Particle Density

Higher particle incorporation for CrAIY-Ta powder

 Ta (0.5-3.4 wt.%) has been added to some MCrAIY coatings (A. Vande Put et al., Surf. Coat. Technol., 205, 2010, p. 717)

Effect of Plating Current Density

Decreasing current density led to increased particle incorporation

Composite Coatings with Ni-Co Matrix

Coating thickness ~55 μm, CrAIY particle incorporation 30-40 vol.%

Post-deposition Heat Treatment

- NiCo-CrAIY composite coatings on René 80
- Temperature: 1000, 1100, 1200°C
- Time: 2h
- Environment
 - Vacuum: 10⁻⁴ Pa
 - Ar: 1 atm

NiCo-CrAIY Coatings after Diffusion Heat Treatment

1100°C **1200°C 1000°C** Vacuum **20**µm HV Spot WD Det Mag Ar

- More interdiffusion at 1100-1200°C
- Cr evaporation at 1200°C in vacuum

After Heat Treatment in Vacuum: $\beta + \gamma'$

After Heat Treatment in Ar: $\beta + \gamma + \gamma'$

NiCo-CrAIY Coatings after Diffusion Heat Treatment

• Phases such as β , γ' , and γ were observed

Heat Treatment in Vacuum - NiCoCrAIY

René 80: Ni-3.0Al-14.1Cr-9.3Co-4.0W-3.9Mo-5.1Ti-0.16C-0.016B-0.02Zr, wt.%

- Coating: 8-9 AI, 11-14Cr, 15-18Co (wt.%)
- Cr evaporation at 1100-1200°C
- 3% Cr and 2% Ti at surface 2h at 1200°C

Heat Treatment in Ar - NiCoCrAIY

- Coating: 8-10 AI, 13-15Cr, 14-18Co (wt.%)
- Less Cr evaporation; 14-17 at 1100-1200°C
- 1-2% Ti at surface after 2h at 1200°C

Coating Phase Constituents

Typical MCrAIY composition: 16-22 AI, 18-22 Cr, 0.3Y, at.% (8-12 AI, 18-22 Cr, 0.5Y, wt.%)

- Co destabilizes γ' phase and also improves ductility (>20 wt.% Co)
- Need to increase Cr and Co contents

Approaches to Increase Co and Cr Contents in Electrodeposited NiCoCrAIY Coatings

Co: increase CoSO₄ in the plating solution

Cr: (1) increase the Cr level in Cr-Al-Y powder;
(2) reduce Cr evaporation during heat treatment

Characterization of Coating Surface Roughness

In order to provide optimum adherence for an APS TBC top coat, a surface roughness of >10 μm Ra is desirable.

$$Z(x) = y(x) - \overline{y}$$

$$Ra = \frac{1}{n} \sum_{i=1}^{n} |Z_i|$$

Roughness of As-deposited Coatings

Horizontal setup (TTU powder, particle loading: 10 g/L)

Current density (mA/cm ²)	Stirring (rpm)	Particle (vol.%)	Ra (µm)
20	80	26	6.3±0.6
60	80	20	10.3±3.9
20	300	21	3.4±1.6
60	300	32	7.4±0.6

• Barrel setup (particle loading: 20 g/L, current density: 20 mA/cm²)

Powder	Rotating (rpm)	Particle (vol.%)	Ra (μm)
Commercial	4	54	3.6±0.4
Commercial	7	47	4.5±0.7
Commercial	10	30	3.6±0.6
TTU	4	33	6.0±1.0
TTU	7	35	4.1±0.7
TTU	10	30	2.9±0.2

Characterization of NiCrAIY Coating Hardness

 As-deposited specimens (35-40 vol.% CrAIY in Ni)

 After heat treatment (2h in vacuum at 1000-1200°C)

- Hardness of as-deposited coating was measured in the Ni matrix
- Hardness is lower than thermal sprayed Ni-22Cr-10AI-1Y coating (380-530 HV). (Mishra, et al., J. Tribol., 2006;)

Future Work

- Evaluation of Coating Performance
 - Oxidation testing in water vapor at ORNL
 - Understanding of failure mechanism
- Coatings for oxidation testing (1100°C, air + 10% H₂O)
 - Pack cementation NiAI
 - HVOF MCrAIY
 - Electro-codeposited NiCrAIY
 - Electro-codeposited NiCoCrAIY (current composition)
 - Electro-codeposited NiCoCrAIY (increased Cr & Co)

Summary

- A rotating barrel system was established and utilized to synthesize Ni-CrAIY & NiCo-CrAIY composite coatings with uniform particle incorporation.
 - Particle incorporation was affected by particle shape and density
 - Decreasing current density led to increased particle incorporation
 - 25-40 vol.% CrAIY particles were incorporated
- Post-deposition heat treatments were conducted in vacuum and Ar at 1000-1200°C.
 - High Cr evaporation in vacuum at ≥1100°C
 - Co and Cr contents need to be further increased
- Coating hardness and surface roughness were evaluated.
 - Electro-deposited coatings showed Ra <10µm
 - Hardness was lower than thermal sprayed coatings

Acknowledgments

- Jason Witman, Brian Bates and Linzhu Zhang, Tennessee Tech University (TTU)
- Center for Manufacturing Research, TTU
- Dr. Voramon Dheeradhada (GE Global Research) & Mr. Warren Nelson (GE Energy)
- U. S. Department of Energy National Energy Technology Laboratory, University Turbine Systems Research, Award No. DE-FE0007332; Project Manager: Dr. Patcharin Burke