

University Turbine Systems Research Workshop

Jake Mills Senior Systems Design Engineer Florida Turbine Technologies, Inc. 561-427-6439 jmills@fttinc.com

www.fttinc.com

Copyright 2014, Florida Turbine Technologies, Inc. All Rights Reserved

Outline

- Air Riding Seal Concept
- Phase I
 - Design
 - Testing
- Application
- Future Development

Concept

- Non-contacting static to rotating seal
- Hydrostatic balance of forces
- Ability to follow rotor to maintain close clearances

ARS Concept

Equilibrium

$$\Sigma F_x = 0$$

$$P_h A_h + P_l A_l = P_c A_c$$

Increased Clearance $\Sigma F_x = \rightarrow$

$$P_h A_h + P_l A_l > P_c A_c$$

Reduced Clearance $\Sigma F_x = \leftarrow$

$$P_h A_h + P_l A_l < P_c A_c$$

Rig Design

Analytical Models

Seal Testing

Simple low cost rig used for initial evaluation of the ARS seal concept

Rig Design

Analytical Models

Seal Testing

Simple low cost rig used for initial evaluation of the ARS seal concept

Rig Design

Analytical Models

Seal Testing

Rig Design

Analytical Models

Seal Testing

- Simple 1D models used to study design variables
- More complex CFD models used for more accurate physical representation
- Analytical models then anchored to test data

Predicted seal clearance is 0.0030" to 0.0035"

Rig Design

Analytical Models

Seal Testing

CFD Model

Tetrahedral grid with prism layers to resolve boundary layer

☐ Cells = 1.3E6

- l Total Energy
- ☐ Shear Stress Transport (SST)
- Adiabatic walls

Heat Transfer

Advection Scheme

Copyright 2014, Florida Turbine Technologies, Inc. All Rights Reserved

Rig Design

Analytical Models

Seal Testing

CFD Model

Rotating

Results are periodic, a simplified sector model can be used

Seal is fundamentally hydrostatic

30 cells in gap

Rig Design

Analytical Models

Seal Testing

3D Periodic CFD Model

- Studied clearances
 - 0.001"
 - 0.002"
 - 0.003"
 - 0.005"
 - 0.010"
- Inlet pressures
 - 95 psi
 - 50 psi
 - 20 psi

Model Statistics:

- ☐ Structured hexahedral grid
- ✓ Nodes = 5.41e06
- ✓ Cells = 5.58e06
- ✓ Cells in axial gap =30
- ✓ Expansion=1.2
- ✓ Near wall cell = 9e-05 m
- ☐ Turbulence Model
- √ Shear Stress Transport
- □ Heat Transfer
- √ Total Energy
- ✓ Adiabatic walls☐ Advection Scheme
- High resolution

On the rig, clearance of 0.005" and less led to uniform pocket pressures

Rig Design

Analytical Models

Seal Testing

CFD Model

 Manually run for the five clearances at the three inlet pressures

CFD predicted seal clearance is 0.0030" to 0.0033"

CDs from CFD model used to improve the accuracy of the 1D model

Rig Design

Analytical Models

Seal Testing

- Test matrix developed to measure seal performance over a range of speeds and pressures
- For each test speed the supply pressured was varied from atmospheric to 95 psig while holding the downstream pressure at atmospheric

	Test Number	Shaft Speed (rpm)	Face Speed (ft/s)	ΔP (psid)
Peed Pow	01a	0	0	20
	01b	0	0	40
	01c	0	0	60
	01d	0	0	80
	02a	10,450	200	20
	02b	10,450	200	40
	02c	10,450	200	60
	02d	10,450	200	80
	03a	20,900	400	20
	03b	20,900	400	40
	03c	20,900	400	60
	03d	20,900	400	80

	Test Number	Shaft Speed (rpm)	Face Speed (ft/s)	ΔP (psid)
	04a	31,350	600	20
_	04b	31,350	600	40
High Speed	04c	31,350	600	60
	04d	31,350	600	80
	05a	41,800	800	20
	05b	41,800	800	40
_	05c	41,800	800	60
	05d	41,800	800	80

Rig failure occurred during high speed testing. However low speed data indicates seal performance is independent of speed

Rig Design

Analytical Models

Seal Testing

Test data compares favorably to analytical predictions

Linear relationship between supply pressure and flow rate

Non-dimensionalized pressure remains constant for a given design

Rig Design

Analytical Models

Seal Testing

- Friction plays a role in the steady state operating clearance
- Seal design should minimize friction forces

Analytical models provide an accurate representation of the seal

Rig Design

Analytical Models

Seal Testing

ARS Application

ARS technology applicable to a variety of rotating to static seals

 Large utility scale engine performance model created to assess benefits of retrofitting an engine with the ARS technology [1]

ARS Application

ARS replacing labyrinth interstage seals

Benefit in the Turbine

Leakage Location	Baseline
Rotor 1 Upstream	1.903%
Rotor 1 Downstream	0.755%
Rotor 2 Upstream	0.769%
Rotor 2 Downstream	1.019%
Rotor 3 Upstream	0.175%
Total Key Leakages	4.621%

Benefit in the Compressor

- Increased compressor efficiency estimated from data correlating stage efficiency increase due to reduced leakage [2]
- Stage efficiency benefit weighted by pressure ratio to arrive at on overall compressor efficiency increase
- Potential increase of compressor isentropic efficiency of 0.34% points

Power Revenue	\$8,574,725
Fuel Expense	\$1,370,743
Net Annual Profit per Engine	\$7,203,982

	Baseline	T&C ARS
Normalized CO ₂ Emissions per	0.784	0.773
kilowatt-hour (lb CO ₂ /kWh)		

Continued Development

Technology Maturation Items

- Design variations
 - Tolerances, surface finish
- Operating anomalies
 - Rotor coning, non-symmetrical BCs
- System response

Phase II SBIR

- Design for specific engine application
- Rig test in engine-like environment

Beyond Phase II

- Partner with OEM
- Conduct engine testing

Technology Development Roadmap (**)

Acknowledgments

Travis Shultz – DOE Program Manager

Todd Ebert – CFD and Sealing Expert

Justin Cejka – Performance Engineer

References

[1] Pequot Publishing Inc., "Gas Turbine World 2005 Performance Specs", January 2005, Vol. 34 No. 6

[2] Lakshminarayana, B. (1970). Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery. *ASME: Journal of Basic Engineering*, 92(3), 467-480.