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Motivation

1. Thermophysical properties of CO, for
design and optimization of sCO2 power
cycles

2. For Carbon Capture and Sequestration
(CCS), need to know phase behavior of
water in compressed CO, (condensation in
pipelines, etc. leads to corrosion)
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Outline

1. CO, Thermodynamic Properties (review)

CO, Thermal Conductivity: Measurements
and Correlation

CO, Viscosity Correlation

4. Dew Point of Water in Compressed CO,

NIST

Future Possibilities
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Thermodynamic Properties of Pure CO,

e Compute using Equation of State (EOS) p(p,T)
[state-of-the-art: Helmholtz energy as f(p,7)]

e NOTE: EOS also needed for transport correlations [to
get p(p,T) and for critical enhancement]

e Old engineering EOS (Peng-Robinson, etc.) not accurate
enough, especially around critical point.

* For well-measured fluid, can fit substance-specific
reference EOS.

e Early standard EOS: Ely et al. (NBS), 1987.
e State of the art: Span and Wagner (1996).

NIST MATERIAL MEASUREMENT LABORATORY



Span-Wagner EOS for CO,
e Upto 1100 K (1520 °F) and 800 MPa (116,000 psia)

e Extrapolation believed to be good beyond those limits

e Uncertainty similar to that of best data, should be
negligible for engineering purposes

e Implemented in NIST REFPROP (and other software)
e Should be the benchmark for work with pure CO,

e If too slow for an application (CFD), can pre-generate
grids for spline interpolation
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Thermal Conductivity of Pure CO,

e Current correlation from 1990, based on older data and
used older (1987) EOS.

e Uncertainties around 5 % at many conditions (1 % or 2 %
in some well-measured regions). Uncertainty due to
limitations of existing data, especially at high T and/or P
and near the critical point.

e QOur plan:

1.

NIST

Take new data with lower uncertainty over wide range
of conditions (Done)

New correlation, using new data, Span-Wagner EOS,
and theoretical guidance (in progress)
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Thermal Conductivity Measurements
e Carbon dioxide sample purity of 99.994 %

e Subcritical thermal conductivity measured for liquid and
vapor along 220, 237, 252, 267, 282, and 296 K isotherms

e Supercritical thermal conductivity measured along 310, 314,
324, 340, 370, 404, 453, 503, 553, 603, 652, 702, and 752 K
isotherms

e Transient hot-wire measurements for liquid phase and for gas
phase at pressures from 0.5 MPa to saturation or 69 MPa

e Steady-state hot-wire measurements for gas phase at
pressures below 1 MPa

e Uncertainty is 0.5 % for liquid and compressed gas, increasing
to 3 % for gas below 1 MPa and in the critical region
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Schematic of Hot-Wire Bridge
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NIST

Working Equation (transient hot wire)

10
AT, =1 In(t)+|n(4aj = AT, + 5T
=1

AnA I‘OZ—C

AT,y = Iideal temperature rise (line heat source) (K)
q = applied power per unit length of wire (W/m)
A = thermal conductivity (W/(m-K))

t = elapsed time (s)

a = thermal diffusivity (m?/s)

o = wire radius (m)

C = exponential of Euler’s Constant (1.781...)
AT, = measured temperature rise (K)

oT; = corrections for non-ideal heat transfer (K)
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Working Equation (Steady-State Hot Wire)

A= d In 3
27(T,—T,)| L)

A = thermal conductivity (W/(m-K))

q = applied power per unit length of wire (W/m)
r, = wire radius (m)
r, = concentric cavity radius (m)

.= Mmeasured wire temperature (K)
T,= cell temperature (K)
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Thermal Conductivity (Subcritical Vapor)
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Thermal Conductivity: Liquid & Supercritical Phases
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Thermal Conductivity Critical Enhancement
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Thermal Conductivity Correlation

 Thermal conductivity expressed as sum of 3
contributions

Z(p:T):ﬁ'ﬂ(T)_i_il(p:T)_'_ﬂ’Z(p:T)

Zero-Density contribution I Critical e\nhancement

Residual contribution
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Zero-Density Limit
Experimental data at density < 50 kg/m?3 considered for regression

Data sorted into “bins” of ~ 3 K; thermal conductivity corrected to
nominal temperature

ﬂ“corr (Tnom 1 ,O) » ﬂ’exp (Texp 1 ,O) + [ﬂ‘ (Tnom 1 ,O) o Z(Texp d p)]calc

Weighted linear least squares regression used to extrapolate to
zero density resulting in set of experimental A,(T,)

0 Results: 47 isotherms from 219 K to 751 K

Experimental data supplemented by selected theoretical results
from the work of Hellmann (2014)

0 Uncertainty of 1 % for 300 K < T < 700 K, increasing to 2 % at
150 K and 2000 K.

o0 Added 8 points between 150 K and 215 K, 14 points between
760 K and 2000 K
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Zero-Density Limit, continued

o Zero-density values
fit to functional form:

NIST

100(!1 exp_‘a' |:a|}.”."l cal

Zero-density thermal conductivity
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Residual Contribution

ldentify primary data set and assess their uncertainties

e Fit primary experimental data simultaneously for residual and
critical enhancement terms.

e Use equation of state of Span and Wagner to provide density
and thermodynamic properties required in enhancement term

e Theoretical guidance not available for the residual contribution
o Use empirical form

AT, p)=D.(B,,+B, T)p!
j=1
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Selected (preliminary) Results
Supercritical Fluid, T > 500 K
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Selected (preliminary) Results

Significant improvements in representation of liquid phase
Our new data represented to ~1%
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Viscosity of Pure CO,

e Current correlation from 1990, slight revision in 1998 for
better data in one high-pressure region. Uses old (1987)
equation of state.

e Uncertainties 4-5 % at many conditions (1 % or 2 % in
some well-measured regions)

e Since 1998, some new data available, and better
theoretical understanding (esp. for dilute gas)

e Our plan: New correlation, using new data, Span-Wagner
EOS, and theoretical guidance
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p,T-Distribution of Selected Viscosity Data
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NIST

Viscosity Formulation
n(T,p)=n(T) + An(T,p) + An (T, p)

Visc(Temp,Dens) p—0 residual critical enhancement (small)

Correlation for p — 0 by Bock et al. (2002)

n,(T) = 0.021357./(MT) / o exp{Za(lnT*)}

with T =T/(g/k,)

Residual part, Symbolic regression (preliminary)

An(T,p) = mL[alpr +a,0° +(a,p,)"/ Tr]
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NIST

Viscosity Data and Correlation for p - 0
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NIST

Data Representation by Preliminary Correlation
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Dew Points in CCS
e For carbon capture and sequestration (CCS),
compressed CO, in pipelines will contain some H,O.
 Condensation of H,O undesirable (corrosion).

* Need to be able to predict dew point temperature as
a function of pressure and H,O concentration
(calculate how much drying of CO, needed).

« Thermodynamically, this mainly depends on the
deviation of the mixture from ideal-gas behavior.
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Thermodynamics: Virial Expansion

[Heike Kamerlingh Onnes (1901)]
p/(pRT)=1+B(T)p+C(T) 0" +..
B(T) =) > xx;B;(T)
]

- B; (second virial coefficient) rigorously related to

pair potential, C; adds 3-body effects, etc.

- Can calculate all thermodynamic properties (if
density low enough); use as EOS boundary condition.
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Gas/H,O Second Virial Coefficient

e Experiments are difficult (high-T PVT data, or
measure (small!) solubility of water or ice in carrier
gas at low T).

e Theory (collaboration with Richard Wheatley, U. of
Nottingham): ab initio quantum mechanics 2
quantitatively accurate potential for pairs of small
molecules, then calculate B,, rigorously
(uncertainties from unc. in potential).
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B,/ (cm® mol™)
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Dew-Point Data

e Problem: Uncertainties from theory are larger than
desired, reducing uncertainty with more
computations not currently feasible. Also, theory
loses accuracy at higher pressures.

e Solution: Better measurements in key temperature
range, using NIST dew-point apparatus developed
for humidity standards.
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Dew-Point Experiments

1. Saturation system for compressed CO,

(generates saturated gas at P and T;)

2. Gravimetric hygrometer (designed for

NIST

humidity standards) measures amounts of
H,O0 and CO, in saturated gas

NIST has only working metrology-class
gravimetric hygrometer in the world [C.W. Meyer
et al., Metrologia 47, 192 (2010])].

Expected uncertainty for T,,(x,P): 0.05 °C.
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NIST

Saturation System (for p to 5 MPa)
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NIST Gravimetric Hygrometer

= mW m,,: mass of water vapor
mg m,: mass of carrier gas
Incoming Qutgoing
Humid Gas Water Trap Water Gas Mass Dry Gas
—> (usad only for »  Collection —2 Detarmination [r———

1)
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r>15 mg/e)

Tubes Systerm

Separate moisture from dry gas (using desiccants)

Determine m,, by measuring increase in mass of water

collection system

Determine m, from volume, temperature and pressure
measurements by use of pure-component EOS
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Water Collection Tubes
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e Desiccant used: Magnesium Perchlorate

 Mass measurements (10 ug resolution) made before
and after water collection. ~70 ug uncertainty in
water mass measurement.
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Prover Tube Gas Collection System
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e Pressure and temperature measurements determine gas
density (CO, equation of state well known)

e Laser interferometer measures piston displacement to
determine gas volume, therefore total moles of gas

e Alternating pistons allow continuous gas flow
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Experimental Program

e Report saturated vapor composition (dew point) and
enhancement factor (ratio of H,O partial pressure in
vapor phase to pure H,O vapor pressure)

e 6 Temperatures from 10 °Cto 80 °C

e Pressures up to 5 MPa (higher-pressure saturator
could be built in the future)

 Avoid conditions where gas hydrates form (low T,
high p)

* Use data to fit mixture EOS, also back out B,, with
good precision and rough estimates for C,,,
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Preliminary Results

Water Vapor Enhancement Factor in CO,
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NIST

Preliminary Results for B,
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Summary of Dew-Point Results

 H,O dew point in CO, measured more
accurately than previous data.

 Preliminary results agree very well with
theory for B,, (Wheatley & Harvey, 2011), but
have smaller uncertainty.

 Data should be useful for optimizing mixture
models for design of CCS processes.
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Possible Future Work

« Thermophysical properties of mixed working
fluids for supercritical CO, power cycles.

 Extension of dew-point experiments to higher
pressures.

* Materials compatibility for CO,-rich fluids (for
pipelines and power cycles).
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